Stress-and-strain statement of the travolator metro tunnel lining in course of construction and operation

A travolator (transitional) tunnel between the station and the escalator tunnel with a lobby was built to provide the access to the second exit from the “Sportivnaya” metro station of the St. Petersburg metro. As the main supporting structure, a lining of reinforced concrete blocks was adopted. The outer diameter of the lining is 7.9 m and the inner diameter is 7.2 m. From the side of the station complex the transitional tunnel is located in the zone of influence of several tunnels, which were built earlier. Moreover, it crosses a backfilled tunnel along the route. In such conditions a number of complex problems arise, including the calculation of the stress-and-strain state of the tunnel lining, represented by ribbed reinforced concrete tubings. In order to determine the actual strength in the lining of the transition tunnel under various geometric conditions of mutual arrangement with existing tunnels, field studies were performed. Regularities of the stress-and-strain state formation of the lining at all stages of construction and during 5 years of operation were obtained. The obtained results of the actual stressand-strain state of the tunnel lining were the basis for the verification of the design models for the FEM numerical simulation. The calculations were performed for a three-dimensional finite element mathematical model in the Plaxis 3D computational complex. Comparison of the calculation results with the data of field studies made it possible to obtain the following main conclusion: 23 years that have passed since the construction of the existing tunnels have no more influence on the formation of the stress-and-strain state of the travolator tunnel lining than the technological factors of their construction.

Keywords: transport tunnel, structure interaction, construction technology, monitoring, strength in the lining, computational method, numerical simulation, sensors, long-term research.
For citation:

Lebedev M. O., Stepukov E. V., Larionov R. I. Stress-and-strain statement of the travolator metro tunnel lining in course of construction and operation. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):98—114. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_98.

Issue number: 6
Year: 2022
Page number: 98-114
ISBN: 0236-1493
UDK: 624.191; 624.121.532
DOI: 10.25018/0236_1493_2022_62_0_98
Article receipt date: 14.01.2022
Date of review receipt: 05.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Lebedev M. O., Cand. Sci. (Eng.), Deputy Director General for research activities,http://, OJSC “NIPII Lenmetrogiprotrans”, 191002, SaintPetersburg, BolshayaMoskovskaya, 2, Russia, e-mail:;
Stepukov E. V., junior researcher,, OJSC “NIPII Lenmetrogiprotrans”, 191002, Saint-Petersburg, BolshayaMoskovskaya, 2, Russia, е-mail:;
Larionov R. I., Cand. Sci. (Eng.), head of the geomechanics laboratory, http://orcid. org/0000-0002-1297-6823, OJSC “NIPII Lenmetrogiprotrans”, 191002, Saint-Petersburg, BolshayaMoskovskaya, 2, Russia,


For contacts:

Lebedev M. O., e-mail:


1. Kim S. H., Burd H. J., Milligan G. W. E. Model testing of closely spaced tunnels in clay. Géotechnique. 1998, vol. 48 (3), рр. 375–388.

2. Byun G. W., Kim D. G., Lee S. D. Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel. Tunnelling and Underground Space Technology. 2006, vol. 21 (3−4), 361 р.

3. Choi J. I., Lee S. W. Influence of existing tunnel on mechanical behavior of new tunnel. KSCE Journal of Civil Engineering. 2010, vol. 14 (5), рр. 773–783. DOI: 10.1007/S12205-010-1013-8.

4. Marshall A. M., Klar A., Mair R. J. Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior. Journal of Geotechnical and Geoenvironmental Engineering. 2010, vol.136 (12), рр. 1664–1672. DOI: 10.1061/(ASCE)GT.1943−5606.0000390.

5. Kimmance J. P., Lawrence S., Hassan O., Purchase N. J., Tollinger G. Observations of deformations created in existing tunnels by adjacent and cross cutting excavations. Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, 1996, рр. 707–712.

6. Selman R. Subsurface settlements induced by tunnelling in London Clay. Proceedings European Young Geotechnical Engineer’s Conference, Tallinn, Estonia, 1998, рр. 1–8.

7. Cooper M. L., Chapman D. N., Rogers C. D. F., Chan A. H. C. Movements in the Piccadilly Line tunnels due to the Heathrow Express construction. Géotechnique. 2002, vol. 52 (4), рр. 243–257. DOI:10.1680/geot.

8. Mohamad H., Bennett P. J., Soga K., Mair R. J., Bowers K. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement. Géotechnique, 2010, vol. 60 (12), рр. 927–938. DOI:10.1680/geot.8.P.074.

9. Fang Q., Zhang D., Li Q., Wong L. N. Y. Effects of twin tunnels construction beneath existing shield-driven twin tunnels. Tunnelling and Underground Space Technology. 2015, vol. 45, рр. 128–137. DOI:10.1016/j.tust.2014.10.001.

10. Atkinson J. H., Potts D. M. Subsidence above Shallow Tunnels in Soft Ground. Journal of the Geotechnical Engineering Division. 1997, vol. 103 (4), рр. 307–325. DOI: 1 0.1016/0148−9062(77)91056−7.

11. Bobet A. Analytical solutions for shallow tunnels in saturated ground. Journal of Engineering Mechanics. 2001, vol. 127(12), рр. 1258–1266. DOI:10.1061/(ASCE)0733−9399(2001)127:12(1258).

12. Peck R. Deep excavations and tunnelling in soft ground. In 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1969, рр. 225−290.

13. Sagaseta C. Analysis of undraind soil deformation due to ground loss. Geotechnique. 1987, vol. 37 (3), рр. 301–320. DOI:10.1680/geot.1987.37.3.301.

14. Ahrens H., Linder E., Lux K. H. Zur Dimensionierung von Tunnelausbautennach den “EmpfehlungenzurBerechnung von TunnelnimLockergestein (1980)”. Die Bautechnik. 1982, vol. 59, 260 p.

15. Blom C. Design philosophy of concrete linings for tunnels in soft soils. Ph. D. thesis, Delft University, 2002, 184 p.

16. Duddeck H. Empfehlungenzur Berechnung von Tunneln im Lockergestein. Die Bautechnik. 1980, vol. 10, рр. 349–356.

17. Arnau O., Molins C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: Numerical simulation. Tunnelling and Underground Space Technology. 2011, vol. 26, рр. 778–788. DOI:10.1016/j. tust.2011.05.002.

18. Blom C., Van Der Horst E., Jovanovic P. Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line south. Tunnelling and Underground Space Technology. 1999, vol. 14, рр. 217–224. DOI:10.1016/s0886−7798(99)00035−8.

19. Addenbrooke T. I., Potts D. M. Twin tunnel interaction: surface and subsurface effects. International Journal of Geomechanics, 2001, vol. 1 (2), рр. 249–271. DOI: 10.1061/ (ASCE)1532−3641(2001)1:2(249).

20. Ng C. W., Lee K. M., Tang D. K. Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions. Canadian Geotechnical Journal. 2004, vol. 41 (3), рр. 523–539. DOI:10.1139/t04−008.

21. Avgerinos V., Potts D. M., Standing J. R. Numerical investigation of the effects of tunnelling on existing tunnels. Géotechnique, 2017, vol. 67 (9), рр. 808–822. DOI:10.1680/ jgeot.sip17.p.103.

22. Jiangwei S. B., Xian Z. B., Yonghui C. B., Li C. Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel. Tunneling and Underground Space Technology. 2018, vol. 72, рр. 145–153. DOI:10.1016/j.tust.2017.11.030.

23. Xing-Tao L., Ren-Peng C., Huai-Na W., Hong-Zhan C. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle. Tunneling and Underground Space Technology. 2019, vol. 89, рр. 78–90. DOI:10.1016/j.tust.2019.03.021.

24. Rongzhu L., Tangdai X., Yi H., Feng Y. Effects of above-crossing tunneling on the existing shield tunnels. Tunnelling and Underground Space Technology. 2016, vol. 58, рр.159–176. DOI:10.1016/j.tust.2016.05.002.

25. Chang-Koon C., Phill-Seung L. Interaction between two asymmetric noncircular tunnels. The 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM17), 28 August — 1 September, Ilsan(Seoul), Korea, 2017. pp. 1–14.

26. Runke H., Pengyuan Z., Zhanping S., Junbao W., Shihao L., Yuwei Z. Study on the settlement of large-span metro station’s baseplate caused by the tunnels newly built beneath it Advances. Mechanical Engineering, 2019, vol. 11(2), pp. 1–13. DOI: 10.1177/1687814018825161.

27. Marwan A. Computational Analysis of Segmental Linings in Mechanized Tunneling, Dr.-Ing., Institute for Structural Mechanics Faculty of Civil and Environmental Engineering Ruhr University Bochum, Bochum. 2019, 225 p.

28. Sammal’ A. S., Anciferov S. V., Deev P. V. Analytical methods for underground structures calculating. Tula, 2013, 111 р. [In Russ].

29. Anciferov S. V., Fomin A. V., Feklin A. A., Kudrjavcev M. A. Investigation of the stress state of the rock mass and the lining of parallel tunnels constructed near the mountain slope. Fundamental and applied issues of mining sciences. 2021, vol. 8(1), рр. 20–26. [In Russ].

30. Meskhi B. Ch., Pleshko M. S., Voinov I. V., Caixao J. J. Z. Safe operation of transportation tunnels based on predictive modeling of active geomechanical processes. MIAB. Mining Inf. Anal. Bull. 2020, no. 8, pp. 86–96. [In Russ]. DOI: 10.25018/0236-14932020-8-0−86−96.

31. Kostenko B. V., Larionov R. I. Field data analysis in construction of escalator tunnels at ObvodnyKanal and Admiralteyskaya Stations of the Saint-Petersburg Metro using tunnel boring machine. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 48–64. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_48.

32. Thomas A. H. New challenges in numerical modeling. Proc. of the 11th Int. Conf. ‘Transport and City Tunnels’, Prague 14−16 June 2010. — Prague: Czech Tunnel Association ITA–AITES. 2010, рр. 721–725.

33. Lebedev M. O., Romanevich K. V., Basov A. D. Assessment of the mutual influence of underground subway structures during construction and operation. Geotechnics. 2018, vol. X, no. 1−2, рр. 82–92. [In Russ].

34. Demenkov P. A., Karasev M. A., Potemkin D. A. Geomechanical assessment of the phased construction of a deep-laid underground pylon station. Journal of Mining Institute. 2011, vol. 190, рр. 220–224. [In Russ].

35. Lebedev M. O. The influence of operational loads on the change in the stress-strain state of the transport tunnel lining. Fundamental and applied issues of mining sciences. 2021, vol. 8(1), рр. 108–114. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.