Bibliography: 1. Wagner H. Deep mining: A rock engineering challenge. Rock Mechanics and Rock Engineering. 2019, vol. 52, no. 5, pp. 1417—1446. DOI: 10.1007/s00603-019-01799-4.
2. Pathegama G. Ranjith, Jian Zhao, Minghe Ju, Radhika V. S. De Silva, Tharaka D. Rathnaweera, Adheesha K. M. S. Bandara. Opportunities and challenges in deep mining: A brief review. Engineering. 2017, vol. 3, no. 4, pp. 546—551. DOI: 10.1016/J.ENG.2017.04.024.
3. Kazlouski J., Zhuravkov M. A., Bogdan S. I. Study of sylvinite heterogeneous creep characteristics and their influence on shaft stability. The Mechanical Behavior of Salt X. CRC Press. 2022, pp. 519—529. DOI: 10.1201/9781003295808-48.
4. Blanco-Martín L., Rouabhi A., Hadj-Hassen F., Jaworowicz J., Azabou M., Hévin G., Labaune P. Creep of rock salt under a large range of deviatoric stresses. Rock Mechanics and Rock Engineering. 2024. URL: https://link.springer.com/article/10.1007/s00603-024-03841-6#citeas (дата обращения: 24.05.2024). DOI: 10.1007/s00603-024-03841-6.
5. Baryakh A. A., Fedoseev A. K., Lobanov S. Yu. Deformations and fracture of rock strata during deep level potash mining. Procedia Structural Integrity. 2021, vol. 32. pp. 109—116. DOI: 10.1016/j. prostr.2021.09.016.
6. Asanov V. A., Evseev A. V., Pankov I. L., Toksarov V. N. Investigation of the deformation processes of rocks and elements of the chamber development system. Gornyi Zhurnal. 2018, no. 6, pp. 13—16. [In Russ]. DOI: 10.17580/gzh.2018.06.02.
7. Swift G. M., Reddish D. J. Underground excavations in rock salt. Geotechnical and Geological Engineering. 2005, vol. 23, no. 1, pp. 17—42. DOI: 10.1007/s10706-003-3159-3.
8. Prapasiri Junthong, Supattra Khamrat, Suratwadee Sartkaew, Kittitep Fuenkajorn Determination of time-dependent strengths of salt pillars based on strain energy principle. International Journal of Mining Science and Technology. 2019, vol. 29, no. 2, pp. 273—279. DOI: 10.1016/j.ijmst.2018.04.011.
9. Rybak J., Khayrutdinov M. M., Kuziev D. A., Kongar-Syuryun Ch. B., Babyr N. V. Forecasting of the geomechanical state of the massif during the development of salt deposits with laying. Journal of Mining Institute. 2022, vol. 253, pp. 61—70. [In Russ]. DOI: 10.31897/PMI.2022.2.
10. Marian D.-P., Onica I. Finite element modelling of the stability of underground mining excavations at old mines — slanic salt mine. Mining Revue. 2021, vol. 27, no. 1, pp. 12—23. DOI: 10.2478/ minrv-2021-0002.
11. Wang S., Wang H., Zhu H., Wu Z., Li Z. Long-term stability analysis of pillars in salt cavern storage based on the salt rock dilatancy boundary evaluation method. Geotechnical and Geological Engineering. 2023, vol. 41, no. 6, pp. 3349—3358. DOI: 10.1007/s10706-023-02459-9.
12. Phillipson S. E. Texture, mineralogy, and rock strength in horizontal stress-related coal mine roof falls. International Journal of Coal Geology. 2008, no. 3, no. 75, pp. 175—184. DOI: 10.1016/j. coal.2008.05.018.
13. Andreiko S. S., Nesterova S. Yu. The nature of sudden destruction of the near-contour part of the massif during the driving of development workings in the mine of the Gremyachinsky mining and processing plant. Perm Journal of Petroleum and Mining Engineering. 2022, vol. 22, no. 3, pp. 144—150. [In Russ]. DOI: 10.15593/2712-8008/2022.3.6.
14. Lyadov V. O., Papulov A. S. Results of studies on the full gas content in rocks of the productive formation of the Gremyachinskoye potash salt deposit. Problems of Subsoil Use. 2023, no. 2 (37), pp. 99—111. [In Russ]. DOI: 10.25635/2313-1586.2023.02.099.
15. Rylnikova M. V., Sakharov E. M., Neugomonov S. S. Selection of the type and substantiation of the design of a strong anchor for mine workings in the development of deep deposits of potassium salt. News of the Tula state university. Sciences of Earth. 2023, no. 3, pp. 279—292. [In Russ].
16. Morozov I. A., Toksarov V. N., Polyakov I. V., Lifshic E. L. The impact study of mining on the stability of potash mine workings. News of the Tula state university. Sciences of Earth. 2024, no. 1, pp. 226—237. [In Russ].
17. Dinmohammadpour M., Nikkhah M., Goshtasbi K., Ahangari K. Application of the Kaiser effect in in-situ stress measurement in rocks — An overview. The Mining-Geology-Petroleum Engineering Bulletin. 2022, pp. 1—16. DOI: 10.1007/s00603-019-01799-4.
18. Xu Y., Wang H., Li M., Li P., Zhao P., Ji A., Liu L., Liu Y. Evaluation method for the bearing capacity of reinforced concrete beams based on the Kaiser effect. Buildings. 2023, vol. 13, no. 8, pp. 1—14. DOI: 10.3390/buildings13082003.
19. Nikolenko P. V., Shkuratnik V. L., Chepur M. D., Koshelev A. E. Using the Kaiser effect in composites for stressed rock mass control. Journal of Mining Science. 2018, vol. 54, no. 1, pp. 21—26. DOI: 10.1134/S1062739118013282.
20. Toksarov V. N., Beltyukov N. L., Udartsev A. A., Morozov I. A., Pospelov D. A. Results of stress assessment in an intact anhydrite-dolomite rock massif. Gornoe ekho. 2022, no. 2 (87), pp. 62—67. [In Russ]. DOI: 10.7242/echo.2022.2.10.
21. Protosenya A. G., Karasev M. A., Katerov A. M., Petrushin V. V. Analysis of approaches to the prediction of the stress-strain state of the vertical shaft lining constructed in a salt massif. Transport, mining and construction engineering: science and production. 2023, no. 19, pp. 129—137. [In Russ]. DOI: 10.26160/2658-3305-2023-19-129-137.
22. Zhao Y., Wang X., Tang W., Li Y., Lin H., Wang Y., Zhang L. Creep behavior of layered salt rock under triaxial loading and unloading cycles. Applied Rheology. 2023, no. 33, pp. 1—10. DOI: 10.1515/arh-2023-0103.