Science-based technological solutions for aerological risks reducing in operating and designing coal mines

The relevance of increasing the coal mines aerological safety is due to the complication of mining and geological conditions for the development of coal seams and the intensification of production processes in underground coal mining. The methodology for assessing the aerological risks of mines includes a background component, which consistss the mining and geological characteristics of the developed seams, and a systemic component, which consider mining coal seams conditions. On the basis of the research carried out, calculations were made. The results of assessing the degree of aerological risk of I, II and III ranks for super-category mines and mines angerous due to coal and gas sudden outbursts for different ventilation modes, which reflect the most favorable and unfavorable conditions of coal mining, are presented. It has been established that aerological risks of all ranks are determined to a greater extent by background indicators (gas content of formations, tendency to spontaneous combustion, rock bumps, dust-forming capacity, etc.) than by systemic factors (ventilation methods and schemes, gas content of the area, load on the stope, etc.). A comprehensive method for reducing dust and gas hazards in excavation areas, implemented as a method of moistening coal seams with gasfilled solutions of surfactants, has been scientifically substantiated. The method can be used to influence the coal seam in order to reduce its dust-forming capacity and gas emission, as well as to increase the efficiency of dust collection during coal breaking. A technique for coal mass treating with gas-filled solutions of surfactants was developed, including the use of rational moistening parameters.

Keywords: coal mine, aerological risk levels, methane, coal dust, mine ventilation schemes and methods, degassing, seam moistening, gas-filled solution, surfactants.
For citation:

Balovtsev S. V., Skopintseva O. V. Science-based technological solutions for aerological risks reducing in operating and designing coal mines. MIAB. Mining Inf. Anal. Bull. 2023;(2):139-151. [In Russ]. DOI: 10.25018/0236_1493_2023_2_0_139.

Issue number: 2
Year: 2023
Page number: 139-151
ISBN: 0236-1493
UDK: 622.4:622.8
DOI: 10.25018/0236_1493_2023_2_0_139
Article receipt date: 19.12.2022
Date of review receipt: 20.12.2022
Date of the editorial board′s decision on the article′s publishing: 10.01.2023
About authors:

S.V. Balovtsev1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-0961-6050,
O.V. Skopintseva1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-7257-8720,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

S.V. Balovtsev, e-mail:


1. Kubrin S. S., Reshetnyak S. N., Zakorshmenny I. M., Karpenko S. M. Simulation modeling of equipment operating modes of complex mechanized coal mine face. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 286—294. [In Russ]. DOI: 10.21177/19984502-2022-14-2-286-294.

2. Bosikov I. I., Klyuev R. V., Khetagurov V. N. Analysis and comprehensive evaluation of gas-dynamic processes in coal mines using the methods of the theory of probability and math statistics analysis. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 461—467. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-461-467.

3. Kabanov E. I., Korshunov G. I., Magomet R. D. Quantitative risk assessment of miners injury during explosions of methane-dust-air mixtures in underground workings. Journal of Applied Science and Engineering. 2020, vol. 24, no. 1, pp. 105—110. DOI: 10.6180/jase. 202102_24(1).0014.

4. Wang G., Ren H., Zhao G. Zhang D., Wen Zh., Meng L., Gong Sh. Research and practice of intelligent coal mine technology systems in China. International Journal of Coal Science & Technology. 2022, vol. 9, article 24. DOI: 10.1007/s40789-022-00491-3.

5. Li Xiangong, Li Yu, Fa Ziwei, Alam Easar. Risk assessment of coal and gas outburst accidents in coal mines based on factor analysis and logistic regression. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-1, pp. 116—127. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_116.

6. Bosikov I. I., Klyuev R. V., Aimbetova I. O., Makhosheva S. A. Assessment and analysis of aerodynamic parameters of air flows for effective selection of air supply schemes in coal mines. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3, pp. 397—405. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-397-405.

7. Yueze L., Akhtar S., Sasmito A. P., Kurnia J. C. Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face. International Journal of Mining Science and Technology. 2017, vol. 27, no. 4, pp. 657—662. DOI: 10.1016/j.ijmst.2017.05.019.

8. Hasheminasab F., Bagherpour R., Aminossadati S. M. Numerical simulation of methane distribution in development zones of underground coal mines equipped with auxiliary ventilation. Tunnelling and Underground Space Technology. 2019, vol. 89, pp. 68—77. DOI: 10.1016/ j.tust.2019.03.022.

9. Filin A. E., Kurnosov I. Yu., Kolesnikova L. A., Ovchinnikova T. I., Kolesnikov A. S. Description of the methodology for conducting an experiment on dust deposition of mining and metallurgical production. Ugol’. 2022, no. 9, pp. 67—72. [In Russ]. DOI: 10.18796/0041-57902022-9-67-72.

10. Kornev A. V., Korshunov G. I., Kudelas D. Reduction of dust in the longwall faces of coal mines: Problems and perspective solutions. Acta Montanistica Slovaca. 2021, vol. 26, no. 1, pp. 84—97. DOI: 10.46544/AMS.v26i1.07.

11. Kornev A. V., Ledyaev N. V., Kabanov E. I., Korneva M. V. Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 115—134. [In Russ]. DOI: 10.25018/02 36_1493_2022_62_0_115.

12. Zholmanov D. K., Zinovieva O. M., Merkulova A. M., Smirnova N. A. Assessment of risk management efficiency in mines. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 166—176. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_166.

13. Zhu S., Feng Y., Jiang F., Liu J. Mechanism and risk assessment of overall-instabilityinduced rockbursts in deep island longwall panels. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 106, pp. 342—349. DOI: 10.1016/J.IJRMMS.2018.04.031.

14. Cheng C., Cheng X. Y., Yu R., Yue W. P., Liu C. The law of fracture evolution of overlying strata and gas emission in goaf under the influence of mining. Geofluids. 2021, vol. 6, article 2752582. DOI: 10.1155/2021/2752582.

15. Ning J. G., Wang J., Tan Y. L., Xu Q. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining. International Journal of Mining Science and Technology. 2020, vol. 30, no. 2, pp. 207—215. DOI: 10.1016/j.ijmst.2019.03.001.

16. Slastunov S., Kolikov K., Batugin A., Sadov A., Khautiev A. Improvement of intensive in-seam gas drainage technology at Kirova Mine in Kuznetsk Coal Basin. Energies. 2022, vol. 15, no. 3, article 1047. DOI: 10.3390/en15031047.

17. Shulyatieva L. I., Mayorova L. V. Parametric modeling and arrangement of gas drainage in coal mines. MIAB. Mining Inf. Anal. Bull. 2022, no. 8, pp. 168—179. [In Russ]. DOI: 10.25 018/0236_1493_2022_8_0_168.

18. Kulikova E. Yu. Methods of forming an integral risk assessment in mine and underground construction. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 124—133. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-124-133.

19. Shi L., Wang J., Zhang G., Cheng X., Zhao X. A risk assessment method to quantitatively investigate the methane explosion in underground coal mine. Process Safety and Environmental Protection. 2017, vol. 107, pp. 317—333. DOI: 10.1016/j.psep.2017.02.023.

20. Li Y., Su H., Ji H., Cheng W. Numerical simulation to determine the gas explosion risk in longwall goaf areas. A case study of Xutuan Colliery. International Journal of Mining Science and Technology. 2020, vol. 30, no. 6, pp. 875—882. DOI: 10.1016/j.ijmst.2020.07.007.

21. Rodionov V., Tumanov M., Skripnik I., Kaverzneva T., Pshenichnaya C. Analysis of the fractional composition of coal dust and its effect on the explosion hazard of the air in coal mines. IOP Conference Series: Earth and Environmental Science. 2022, vol. 981, no. 3, article 032024. DOI: 10.1088/1755-1315/981/3/032024.

22. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

23. Tarasenko I. A., Kulikova A. A., Kovaleva A. M. On the issue of assessing the automation of control of the parameters of the methane-air mixture. Ugol’. 2022, no. 11, pp. 84—88. [In Russ]. DOI: 10.18796/0041-5790-2022-11-84-88.

24. Du W., Li H., Qi Q., Zheng W., Yang S. Research on multifactor analysis and quantitative evaluation method of rockburst risk in coal mines. Lithosphere. 2022, special 11. DOI: 10.2113/2022/5005317.

25. Lu Gao, Xiangtao Kang, Meng Tang, Jinguo Hu, Jiachi Ren, Cunliu Zhou Study on prediction of outburst risk of excavation face by initial gas emission. Geofluids. 2022, vol. 2022, article 4866805. DOI: 10.1155/2022/4866805.

26. Zhang H., Han W., Xu Y., Wang Z. Analysis on the development status of coal mine dust disaster prevention technology in China. Journal of Healthcare Engineering. 2021, vol. 2021, article 5574579, pp. 1—9. DOI: 10.1155/2021/5574579.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.