Bibliography: 1. Gromyka D. S., Utenkova T. G., Korotkova O. Yu. Estimation methods of wear mechanisms in cutting heads of mining machines: Review. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 75–86. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0−75−86.
2. Pobegailo P. A., Kritsky D. Yu., Gilmanshina T. R. Wear of mining shovel components: Current situation and analysis. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 64–74. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0−64−74.
3. Linnik Yu. N., Linnik V. Yu., Zhabin A. B., Tsikh A. Patterns of influence exerted by cutting drum reliability and coal seam properties on cutter–loader capacity. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 169–180. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_169.
4. Belov N. V., Borodina M. B., Smirnova O. A., Chasovskikh A. S. Failure analysis of main components of cone crushers. MIAB. Mining Inf. Anal. Bull. 2021, no. 3, pp. 17–27. [In Russ]. DOI: 10.25018/0236-1493-20213-0-17−27.
5. Boyarskikh G. A., Simisinov D. I. Comparative evaluation of the effectiveness of hardening of the support elements of ball bits. Izvestiya vuzov. Gornyj zhurnal. 2002, no. 5, pр. 65–72. [In Russ].
6. Boyarskikh G. A., Simisinov D. I. Retrospective analysis of studies and prerequisites for ensuring the reliability of the drilling tool. Izvestiya vuzov. Gornyj zhurnal. 2009, no. 7, pр. 58–65.
7. Galkin V. A., Makarov A. M., Roslyakov S. V. Labor productivity at mining enterprises as a factor in ensuring their competitiveness. Izvestiya USMU. 2020, no. 4(60), pp. 228–235. [In Russ]. DOI: 10.21440/2307-2091-2020-4228−235.
8. Sokolov A. S. Some aspects of the competitiveness of mining enterprises // ETAP: ekonomicheskaya teoriya, analiz, praktika. 2021, no. 3, pp. 73–82. [In Russ]. DOI: 10.24412/2071-6435-2021-3-74−82.
9. Nikitin A. Yu. The development of mining engineering in the new realities depends on the consolidated efforts of industry participants. Gornaya promyshlennost. 2022, no. 2, pp. 10–11. [In Russ].
10. Dunaev A. V. Innovative methods to extend life of foreworn machines. MIAB. Mining Inf. Anal. Bull. 2018, no. 5, pp. 144–150. [In Russ]. DOI: 10.25018/0236-14932018-5-0−144−150.
11. Shcherbakov A. P. Material and method selection for increasing the wear resistance of construction machines components. The Russian Automobile and Highway Industry Journal. 2020, vol. 17, no. 4, pp. 464–475. [In Russ]. Doi.org/10.26518/2071-7296-2020-
17−4-464−475.
12. Syanov S. Yu. Technological support of machinery wear-resistance with electroerosion treatment. Science intensive technologies in mechanical engineering. 2020, no. 12 (114), pp. 18–21. [In Russ]. DOI: 10.30987/2223-4608-2020-12−18−21.
13. Krioni N. K., Mingazheva A. A. Increasing the wear resistance of machine parts by nitriding with complex surface preparation. Materials. Technologies. Design. 2021, vol. 3, no. 2(4), pp. 43–50. [In Russ]. DOI: 10.54708/26587572_2021_32443.
14. Zhachkin S. Yu., Trifonov G. I. Influence of plasma spraying of composite powder materials on the wear resistance of machine parts. Master’s Journal. 2017, no. 1, pp. 30–36.
15. Aynalem G. F. Processing Methods and Mechanical Properties of Aluminium Matrix Composites. Advances in Materials Science and Engineering. 2020, vol. 2020, article 3765791, 19 p. https://doi.org/10.1155/2020/3765791.
16. Panwar N., Chauhan A. Fabrication methods of particulate reinforced Aluminium metal matrix composite-a review. Materials Today: Proceedings. 2018, vol. 5, no. 2, pp. 5933–5939. https://doi.org/10.1016/j.matpr.2017.12.194.
17. Kurganova Yu. A., Kolmakov A. G. Structural metal-matrix composite materials, Moscow, Publishing house MSTU, 2015, 144 p. [In Russ].
18. Bikmukhametov M. V., Zhitnikov D. S. Composite materials as an engine of progress. Internauka. 2020, no. 45−2 (174), pp. 19–20. [In Russ].
19. Ujah C. O., Von Kallon D. V. Trends in Aluminium Matrix Composite Development. Crystals. 2022, vol. 12, no. 10, p. 1357. https://doi.org/10.3390/cryst12101357.
20. Pamfilov E. A., Sheveleva E. V. Composite materials in friction units of technological equipment. Mekhanika i fizika protsessov na poverkhnosti i v kontakte tverdykh tel, detaley tekhnologicheskogo i energeticheskogo oborudovaniya. 2017, no. 10, pp. 28–32.
21. Ali M. Review of stir casting technique and technical challenges for ceramic reinforcement particulate and aluminium matrix composites. Journal of Silicate Based and Composite Materials. 2020, vol. 72, no. 6, pp. 198–204. https://doi.org/10.14382/epitoanyagjsbcm.2020.32.
22. Khazin M. L., Apakashev R. A., Davydov S. Y. Obtaining Aluminum — Matrix Composite Materials Particulate-Reinforced with Ceramic Panicles. Refractories and industrial Ceramics. 2022, vol. 63, no. 3, pp. 291–296.
23. Kim D. Y., Choi H. J. Recent Developments towards Commercialization of Metal Matrix Composites. Materials (Basel). 2020, vol. 13, no. 12, p. 2828. DOI: 10.3390/ ma13122828.
24. Garg P., Jamwal A., Kumar D., Sadasivuni K. K., Hussain C. M., Gupta P. Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology. 2019, vol. 8, no. 5, pp. 4924–4939. https://doi. org/10.1016/j.jmrt.2019.06.028.
25. Lovshenco F. G., Lozikov I. A., Khabibutin A. I. High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying. Foundry production and metallurgy. 2020, no. 3, pp. 99–111. [In Russ]. https://doi. org/10.21122 16X3-6065-2020-3-99−111.
26. Alam M. A., Ya H. H., Azeem M., Yusuf M., Soomro I. A., Masood F., Shozib I. A., Sapuan S. M., Akhter J. Artificial Neural Network Modeling to Predict the Effect of Milling Time and TiC Content on the Crystallite Size and Lattice Strain of Al7075-TiC Composites Fabricated by Powder Metallurgy. Crystals. 2022, vol. 12, pp. 372–392. https:// doi.org/10.3390/cryst12030372.
27. John C. F., Paul R. C., Singh S. C. E., Ramkumar T. Tribological behavior, mechanical properties and microstructure of Al-12Si-ZrC composite prepared by powder metallurgy. Bulletin of the Polish academy of sciences technical sciences (Bull. Pol. Ac.: Tech.). 2017, vol. 65, no. 2, pp. 149–154. DOI: 10.1515/bpasts-2017−0018.
28. Ghasali E., Fazili A., Alizadeh M., Shirvanimoghaddam K., Ebadzadeh T. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods. Materials (Basel). 2017, vol. 10, no. 11, p. 1255. DOI: 10.3390/ma10111255. PMID: 29088114.
29. Varenberg M. Adjusting for Running-in: Extension of the Archard Wear Equation. Tribology Letters. 2022, vol. 70, no. 2, p. 59. DOI: 10.1007/s11249-022-01602-6.
30. Mikheev R. S., Chernyshova T. A. Aluminum matrix composite materials with carbide hardening for solving problems of new technology. Moscow, Izdatel’skaya gruppa URSS, 2013, 360 p. [In Russ].
31. Adiga K., Herbert M. A., Rao S. S., Shettigar A. Applications of reinforcement particles in the fabrication of Aluminium Metal Matrix Composites by Friction Stir Processing — A Review. Manufacturing Rev. 2022, vol. 9, no. 26, рр. 1–17. https://doi. org/10.1051/mfreview/2022025.
32. Nayak K. C., Rane K. K., Date, P. P., Srivatsan T. S. Synthesis of an Aluminum Alloy Metal Matrix Composite Using Powder Metallurgy: Role of Sintering Parameters. Appl. Sci. 2022, vol. 12, p. 8843. https://doi.org/10.3390/app12178843.