New materials in mining engineering

During the extraction of minerals, various mining machines are used to excavate, load and transport the rock mass. During the operation of the equipment, the wear of its components increases and the executive bodies wear out. Due to the wear of the working surfaces of machine parts and equipment, the consumption of fuels and lubricants and electricity consumption increase. As a result, the technical and economic indicators of enterprises are decreasing, and the cost of finished products is increasing. To increase the wear resistance of the working surfaces of parts of mining machines and equipment, wear-resistant steels and cast irons, surfacings and coatings are used. Modern mining engineering demands requirements light weight, high specific strength, excellent heat resistance and corrosion resistance to the materials of parts. These requirements are met by composite metal-matrix materials that combine these properties. Particles of oxides, nitrides, borides and silicides are widely used as fillers. The methods of obtaining, structure and tribological properties of alumina-matrix particulate-filled composite materials are considered. The wear resistance of materials increased with an increase in the concentration of filler particles in the matrix. The wear intensity and wear coefficient decreased with increasing time and sliding distance, and increased with increasing applied load. The wear intensity and wear coefficient of the composites decreased in proportion to the content of filler particles compared to the aluminum matrix. Wear mechanisms are also considered.

Keywords: abrasive wear, aluminum matrix composites, components, chromium carbide, dispersed reinforcement, hardness, mechanical engineering, mechanisms, mining machines, production of composites, tribology, wear resistance.
For citation:

Khazin M. L., Apakashev R. A. New materials in mining engineering. MIAB. Mining Inf. Anal. Bull. 2023;(12-1):149—163. [In Russ]. DOI: 10.25018/0236_1493_2023_121_0_149.

Issue number: 12
Year: 2023
Page number: 149-163
ISBN: 0236-1493
UDK: 621.23.05:62.03
DOI: 10.25018/0236_1493_2023_121_0_149
Article receipt date: 15.05.2023
Date of review receipt: 21.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

Khazin M. L., Dr. Sci. (Eng.), Professor, ORCID iD: 0000-0002-6081-4474, Ural State Mining University, Ekaterinburg, Russia, 620144, e-mail:;
Apakashev R. A., Dr. Sci. (Chem.), Professor, vice-rector for scientific work, ORCID iD 0000-0002-9006-3667, Ural State Mining University, Ekaterinburg, Russia, 620144, e-mail:


For contacts:

1. Gromyka D. S., Utenkova T. G., Korotkova O. Yu. Estimation methods of wear mechanisms in cutting heads of mining machines: Review. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 75–86. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0−75−86.

2. Pobegailo P. A., Kritsky D. Yu., Gilmanshina T. R. Wear of mining shovel components: Current situation and analysis. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 64–74. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0−64−74.

3. Linnik Yu. N., Linnik V. Yu., Zhabin A. B., Tsikh A. Patterns of influence exerted by cutting drum reliability and coal seam properties on cutter–loader capacity. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 169–180. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_169.

4. Belov N. V., Borodina M. B., Smirnova O. A., Chasovskikh A. S. Failure analysis of main components of cone crushers. MIAB. Mining Inf. Anal. Bull. 2021, no. 3, pp. 17–27. [In Russ]. DOI: 10.25018/0236-1493-20213-0-17−27.

5. Boyarskikh G. A., Simisinov D. I. Comparative evaluation of the effectiveness of hardening of the support elements of ball bits. Izvestiya vuzov. Gornyj zhurnal. 2002, no. 5, pр. 65–72. [In Russ].

6. Boyarskikh G. A., Simisinov D. I. Retrospective analysis of studies and prerequisites for ensuring the reliability of the drilling tool. Izvestiya vuzov. Gornyj zhurnal. 2009, no. 7, pр. 58–65.

7. Galkin V. A., Makarov A. M., Roslyakov S. V. Labor productivity at mining enterprises as a factor in ensuring their competitiveness. Izvestiya USMU. 2020, no. 4(60), pp. 228–235. [In Russ]. DOI: 10.21440/2307-2091-2020-4228−235.

8. Sokolov A. S. Some aspects of the competitiveness of mining enterprises // ETAP: ekonomicheskaya teoriya, analiz, praktika. 2021, no. 3, pp. 73–82. [In Russ]. DOI: 10.24412/2071-6435-2021-3-74−82.

9. Nikitin A. Yu. The development of mining engineering in the new realities depends on the consolidated efforts of industry participants. Gornaya promyshlennost. 2022, no. 2, pp. 10–11. [In Russ].

10. Dunaev A. V. Innovative methods to extend life of foreworn machines. MIAB. Mining Inf. Anal. Bull. 2018, no. 5, pp. 144–150. [In Russ]. DOI: 10.25018/0236-14932018-5-0−144−150.

11. Shcherbakov A. P. Material and method selection for increasing the wear resistance of construction machines components. The Russian Automobile and Highway Industry Journal. 2020, vol. 17, no. 4, pp. 464–475. [In Russ].


12. Syanov S. Yu. Technological support of machinery wear-resistance with electroerosion treatment. Science intensive technologies in mechanical engineering. 2020, no. 12 (114), pp. 18–21. [In Russ]. DOI: 10.30987/2223-4608-2020-12−18−21.

13. Krioni N. K., Mingazheva A. A. Increasing the wear resistance of machine parts by nitriding with complex surface preparation. Materials. Technologies. Design. 2021, vol. 3, no. 2(4), pp. 43–50. [In Russ]. DOI: 10.54708/26587572_2021_32443.

14. Zhachkin S. Yu., Trifonov G. I. Influence of plasma spraying of composite powder materials on the wear resistance of machine parts. Master’s Journal. 2017, no. 1, pp. 30–36.

15. Aynalem G. F. Processing Methods and Mechanical Properties of Aluminium Matrix Composites. Advances in Materials Science and Engineering. 2020, vol. 2020, article 3765791, 19 p.

16. Panwar N., Chauhan A. Fabrication methods of particulate reinforced Aluminium metal matrix composite-a review. Materials Today: Proceedings. 2018, vol. 5, no. 2, pp. 5933–5939.

17. Kurganova Yu. A., Kolmakov A. G. Structural metal-matrix composite materials, Moscow, Publishing house MSTU, 2015, 144 p. [In Russ].

18. Bikmukhametov M. V., Zhitnikov D. S. Composite materials as an engine of progress. Internauka. 2020, no. 45−2 (174), pp. 19–20. [In Russ].

19. Ujah C. O., Von Kallon D. V. Trends in Aluminium Matrix Composite Development. Crystals. 2022, vol. 12, no. 10, p. 1357.

20. Pamfilov E. A., Sheveleva E. V. Composite materials in friction units of technological equipment. Mekhanika i fizika protsessov na poverkhnosti i v kontakte tverdykh tel, detaley tekhnologicheskogo i energeticheskogo oborudovaniya. 2017, no. 10, pp. 28–32.

21. Ali M. Review of stir casting technique and technical challenges for ceramic reinforcement particulate and aluminium matrix composites. Journal of Silicate Based and Composite Materials. 2020, vol. 72, no. 6, pp. 198–204.

22. Khazin M. L., Apakashev R. A., Davydov S. Y. Obtaining Aluminum — Matrix Composite Materials Particulate-Reinforced with Ceramic Panicles. Refractories and industrial Ceramics. 2022, vol. 63, no. 3, pp. 291–296.

23. Kim D. Y., Choi H. J. Recent Developments towards Commercialization of Metal Matrix Composites. Materials (Basel). 2020, vol. 13, no. 12, p. 2828. DOI: 10.3390/ ma13122828.

24. Garg P., Jamwal A., Kumar D., Sadasivuni K. K., Hussain C. M., Gupta P. Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology. 2019, vol. 8, no. 5, pp. 4924–4939. https://doi. org/10.1016/j.jmrt.2019.06.028.

25. Lovshenco F. G., Lozikov I. A., Khabibutin A. I. High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying. Foundry production and metallurgy. 2020, no. 3, pp. 99–111. [In Russ]. https://doi. org/10.21122 16X3-6065-2020-3-99−111.

26. Alam M. A., Ya H. H., Azeem M., Yusuf M., Soomro I. A., Masood F., Shozib I. A., Sapuan S. M., Akhter J. Artificial Neural Network Modeling to Predict the Effect of Milling Time and TiC Content on the Crystallite Size and Lattice Strain of Al7075-TiC Composites Fabricated by Powder Metallurgy. Crystals. 2022, vol. 12, pp. 372–392. https://

27. John C. F., Paul R. C., Singh S. C. E., Ramkumar T. Tribological behavior, mechanical properties and microstructure of Al-12Si-ZrC composite prepared by powder metallurgy. Bulletin of the Polish academy of sciences technical sciences (Bull. Pol. Ac.: Tech.). 2017, vol. 65, no. 2, pp. 149–154. DOI: 10.1515/bpasts-2017−0018.

28. Ghasali E., Fazili A., Alizadeh M., Shirvanimoghaddam K., Ebadzadeh T. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods. Materials (Basel). 2017, vol. 10, no. 11, p. 1255. DOI: 10.3390/ma10111255. PMID: 29088114.

29. Varenberg M. Adjusting for Running-in: Extension of the Archard Wear Equation. Tribology Letters. 2022, vol. 70, no. 2, p. 59. DOI: 10.1007/s11249-022-01602-6.

30. Mikheev R. S., Chernyshova T. A. Aluminum matrix composite materials with carbide hardening for solving problems of new technology. Moscow, Izdatel’skaya gruppa URSS, 2013, 360 p. [In Russ].

31. Adiga K., Herbert M. A., Rao S. S., Shettigar A. Applications of reinforcement particles in the fabrication of Aluminium Metal Matrix Composites by Friction Stir Processing — A Review. Manufacturing Rev. 2022, vol. 9, no. 26, рр. 1–17. https://doi. org/10.1051/mfreview/2022025.

32. Nayak K. C., Rane K. K., Date, P. P., Srivatsan T. S. Synthesis of an Aluminum Alloy Metal Matrix Composite Using Powder Metallurgy: Role of Sintering Parameters. Appl. Sci. 2022, vol. 12, p. 8843.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.