New trends in biohydrometallurgy

Authors: Bulaev A. G.

This study generalizes the scientific literature data on new biohydrometallurgical approaches which are considered to be the most promising in terms of application, and analyzes their introduction and advance potential. The new biohydrometallurgical technologies are based on the use of both known processing approaches to new types of raw materials (such as ore and concentrates containing platinum group metals) and new principles of using different microorganisms which are yet unengaged in biohydrometallurgy at the moment but are capable to transform different minerals and to interact with metals. The analysis shows that a significant progress is possible in development and introduction of the biohydrometallurgical technologies in case of using the known processes (bio-oxidation of sulfide minerals by ironand sulfuroxidizing acidophilic microorganisms) and by developing technologies with new microorganisms (fungi, heterogeneous bacteria) and various redox processes with living organisms (reductive leaching). This allows anticipating further expansion of the application range of the biohydrometallurgical technologies with a view to meeting current challenges in mining and metallurgy, in particular, improvement of mineral processing efficiency and activation of new sources of metals, including manmade.

Keywords: biohydrometallurgy, acidophilic microorganisms, sulfide minerals, rebellious ore, bio-oxidation, fungi, heterotrophic bacteria, reductive leaching.
For citation:

Bulaev A. G. New trends in biohydrometallurgy. MIAB. Mining Inf. Anal. Bull. 2021;(3-1):56—87. [In Russ]. DOI: 10.25018/0236_1493_2021_31_0_56.

 

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the state contract.

Issue number: 3
Year: 2021
Page number: 56-87
ISBN: 0236-1493
UDK: 579.66
DOI: 10.25018/0236_1493_2021_31_0_56
Article receipt date: 30.11.2020
Date of review receipt: 21.01.2021
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Bulaev A. G., Cand. Sci. (Biology), Head of Laboratory, bulaev.inmi@yandex.ru, Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences» (Research Center of Biotechnology RAS), Moscow, Russia.

For contacts:
Bibliography:

1. van Aswegen P. C., van Niekerk J., Olivier W. The BIOXΤΜ process for the treatment of refractory gold concentrate. Biomining. Eds. Rawlings D. E., Johnson B. D. BerlinHeidelberg, Springer Verlag, 2007, P. 1–35.

2. Sovmen V. K., Guskov V. N., Belyy A. V., Kuzina Z. P., Drozdov S. V., Savushkina S. I., Mayorov A. M., Zakrevskiy M. P. Pererabotka zolotonosnykh rud s primeneniem bakterialnogo okisleniya v usloviyakh Kraynego Severa [Processing of gold-bearing ores with application of bacterial oxidation in the Far north], novosibirsk, Nauka, 2007, 144 p. [In Russ]

3. Gericke M., Neale J. W., van Staden P. J. A Mintek perspective of the past 25 years in minerals bioleaching. J. S.Afr. Inst. Min. Metall. 2009. Vol. 109. pp. 567–585.

4. Gentina J. C., Acevedo F. Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology. 2013. Vol. 16. Is. 3. DOI: 10.2225/vol16-issue3fulltext-12

5. Johnson D. B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014. Vol. 30. pp. 24–31. DOI: 10.1016/j. copbio.2014.04.008

6. Johnson D. B. The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors . Minerals. 2018. 8. 343. DOI: 10.3390/min8080343

7. Neale J., Seppälä J., Laukka A., van Aswegen P., Barnett S., Gericke M. The MONDO Minerals Nickel Sulfide Bioleach Project: From Test Work to Early Plant Operation. Solid State Phenomena. 2017. Vol. 262. pp. 28—32. DOI: 10.4028/www.scientific.net/SSP.262.28

8. Mahmoud A., Cezac P., Hoadley A. F.A., Contaminea F., D’Hugues P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterioration & Biodegradation. 2017. Vol. 119. pp. 118—146. DOI: 10.1016/j.ibiod.2016.09.015

9. Yin S.,Wang L., Kabwe E., Chen X., Yan R., An K., Zhang L., Wu A. Copper Bioleaching in China: Review and Prospect. Minerals. 2018. 8. 32. DOI: 10.3390/min8020032

10. Riekkola-Vanhanen M. Talvivaara mining company From a project to a mine. Minerals Engineering. 2013. Vol. 48. pp. 2—9. DOI: 10.1016/j.mineng.2013.04.018

11. Kaksonen A. H., Lakaniemi A.-M., Tuovinen O. H. Acid and ferric sulfate bioleaching of uranium ores: A review. Journal of Cleaner Production. 2020. Vol. 264. 121586. DOI: 10.1016/j.jclepro.2020.121586

12. Roberto F.F . Commercial heap biooxidation of refractory gold ores Revisiting Newmont’s successful deployment at Carlin. Minerals Engineering. 2017. Vol. 106. pp. 2–6. DOI: 10.1016/j.mineng.2016.09.017

13. Karavayko G. M., Rossi J., Agate A., Grudev S., Avakyan Z. A. Biogeotekhnologiya metallov. Prakticheskoe rukovodstvo [Biotechnology of metals. Practical guidance]. Moscow, Center of international projects GNKT, 1989, 375 p. [In Russ]

14. G. Rossi, Biohydrometallurgy, Hamburg, McGraw-Hill Book Company, 1990, 609 p.

15. Rawlings D. E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 2002. Vol. 56. pp. 65—91. DOI: 10.1146/annurev.micro.56.012302.161052.

16. Sand W., Gehrke T., Jozsa P.-G., Schippers A. (Bio)chemistry of bacterial leaching— direct vs. indirect bioleaching. Hydrometallurgy. 2001. Vol. 59. pp. 159–175. DOI: 10.1016/ S0304—386X(00)00180—8

17. Krivenko A. P., Glotov A. I. Types of deposits, reserves, production and market of platinum metals. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2000. Vol. 3. no.2. pp. 211—224. [In Russ].

18. Benevolsky B. I., Myzenkova L. F., Avgustinchik I. A. Mineral resource base of precious metals retrospective and forecast. Rudy i metally. 2007. no. 3. pp. 25—91. [In Russ].

19. Dodin D. A., Dodina T. S., Zoloev K. K., Koroteev V. A., Chernyshov N. M. Platinum of Russia: state and prospects. Lithosfera. 2010. no.. 1. pp. 3—36. [In Russ].

20. Panda R., Jha M. K., Pathak D. D. Commercial Processes for the Extraction of Platinum Group Metals (PGMs). Rare Metal Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham, 2018, pp 119—130. DOI: 10.1007/978—3319—72350—1_11.

21. Sefako R., Sekgarametso K., Sibanda V. Potential Processing Routes for Recovery of Platinum Group Metals from Southern African Oxidized PGM Ores: A Review. J. Sustain. Metall. 2017. Vol. 3. pp. 797–807. DOI: 10.1007/s40831—017—0146—0.

22. Sahu P., Jena M. S., Mandre N. R., Venugopal R. Platinum Group Elements Mineralogy, Beneficiation, and Extraction Practices An Overview. Mineral Processing and Extractive Metallurgy Review. 2020. DOI: 10.1080/08827508.2020.179584.

23. Mpinga C. N., Eksteen J. J., Aldrich C., Dyer L. Direct leach approaches to Platinum Group Metal (PGM) ores and concentrates: A review. Minerals Engineering. 2015. Vol. 78. pp. 93–113. DOI:10.1016/j.mineng.2015.04.015.

24. Mwase J. M., Petersen J., Eksteen J. J. A conceptual flowsheet for heap leaching of platinum group metals (PGMs) from a low-grade ore concentrate. Hydrometallurgy. 2012. Vol. 111.− pp. 129−135. DOI: 10.1016/j.hydromet.2011.11.012.

25. Mwase J. M., Petersen J., Eksteen J. J. Assessing a two-stage heap leaching process for Platreef flotation concentrate. Hydrometallurgy. 2012. Vol. 129—130. pp. 74—81. DOI: 10.1016/j.hydromet.2011.11.012.

26. Mwase J. M., Petersen J., Eksteen J. J. A novel sequential heap leach process for treating crushed Platreef ore. Hydrometallurgy. 2014. Vol. 141. pp. 97—104. DOI: 10.1016/j. hydromet.2013.11.005.

27. Shaik K., Petersen J. An investigation of the leaching of Pt and Pd from cooperite, sperrylite and column bioleached concentrates in thiocyanate-cyanide systems. Hydrometallurgy. 2017. Vol. 173. pp. 210—217. DOI: 10.1016/j.hydromet.2017.08.021.

28. Lodeischikov V. V. The technoogy of gold and silver recovery from refractory ores. Vol. 1. Irkutsk: Irgiredmet JSC, 1999, 342 p. [In Russ]

29. Miller, J. D., Wan, R.-Y., & Díaz, X. Preg-robbing gold ores. Developments in Mineral Processing, Volume 15 Advances in Gold Ore Processing, Ed.: M. D. Adams, B. A. Wills. Amsterdam: Elsevier B.V, 2006. pp. 937–972. DOI: 10.1016/s0167—4528(05)15038—8.

30. Barchenkov V. V. Tekhnoogiya gidrometallurgicheskoy pererabotki zolotosoderzhashchikh flotokontsentratov s primeneniyem aktivnykh ugley [Technoogy of hydrometallurgical processing of gold-bearing flotation concentrates using active coals], Chita, Poisk, 2004, 242 p. [In Russ].

31. Kovalev V. N., Golikov V. V., Rylov N. V. Features of the development of processing flow sheets of carbon-gold-sulphide ores. Journal of Siberian Federal University. Chemistry. 2017. Vol. 10. no. 1. pp. 99−109. DOI: 10.17516/1998—2836—0010 [In Russ].

32. Bulaev A. G., Kondrat’eva T. F., Kanaeva Z. K., Kanaev A. T. Biooxidation of a double-refractory gold-bearing sulfide ore concentrate. Microbiology. 2015. Vol. 84. no. 5. pp. 636−643. DOI: 10.1134/S0026261715050033.

33. Sobel K. E., Bolinski L., Foot K. A. Pilot plant evaluation of the redox process for Bakyrchik gold PLC. Minerals Engineering. 1995. Vol. 8. no. 4—5. pp. 431—440. DOI: 10.1016/0892—6875(95)00008-E

34. Balikov S. V., Bogorodskiy A. V., Boldyrev A. V., Gudkov S. S., Dzgoyev CH. T., Yemel’yanov Y. Y., Yepiforov A. V. Avtoklavnoe okisleniye zolotosoderzhashchikh rud i kontsentratov [Autoclave oxidation of gold-bearing ores and concentrates], OAO Irkutsk, Irgiredmet, 2016, 471 p. [In Russ].

35. BIOX Newsletter BIOX Newsletter Issue 1/2020 Improving Overall Gold Recovery at the Suzdal Mine, Kazakhstan using HiTeCC https://www.outotec.com/products-andservices/newsletters/biox-newsletter/issue-1—2020/improving-overall-gold-recovery-at-thesuzdal-mine-kazakhstan-using-hitecc/

36. Dunne R., Levier M., Acar S., Kappes R. Keynote Address: Newmont’s contribution to gold technology. World Gold Conference. 2009, The Southern African Institute of Mining and Metallurgy, 2009.

37. van Niekerk J., Olivier W., van Buuren K., Rytasalo T. BIOX®, ASTER ™ and HiTeCC technologies http://zolteh.ru/ technology_equipment/sovremennoe-sostoyanietehnologijbiox-aster-i-hitecc/ [In Russ].

38. Xu R., Li Q., Meng F.,Yang Y., Xu B., Yin H., Jiang T. Bio-Oxidation of a Double Refractory Gold Ore and Investigation of Preg-Robbing of Gold from Thiourea Solution. Metals. 2020. 10. 1216. DOI: 10.3390/met10091216

39. Hong-ying Y., Qian L., Xiang-ling S., Jin-kui D. Research status of carbonaceous matter in carbonaceous gold ores and bio-oxidation pretreatment. Transactions of nonferrous Metals Society of China. 2013. Vol. 23. Is. 11. pp. 3405−3411. DOI: 10.1016/S1003— 6326(13)62881—2

40. Konadu K. T., Mendoza D. M., Huddy R. J., Harrison S. T.L., Kaneta T., Sasaki K. Biological pretreatment of carbonaceous matter in double refractory gold ores: A review and some future considerations. Hydrometallurgy. 2020. Vol. 196. 105434. DOI: 10.1016/j. hydromet.2020.105434.

41. Amankwah R. K., Yen W.-T., Ramsay J. A. A two-stage bacterial pretreatment process for double refractory gold ores. Minerals Engineering. 2005. Vol. 18. Issue 1. pp. 103—108. DOI: 10.1016/j.mineng.2004.05.009

42. Ofori-Sarpong G., Osseo-Asare K., Tien M. Mycohydrometallurgy: Biotransformation of double refractory gold ores by the fungus, Phanerochaete chrysosporium. Hydrometallurgy. 2013. V. 137. pp. 38–44. DOI: 10.1016/j.hydromet.2013.05.003

43. Ofori-Sarpong G., Osseo-Asare K., Tien M. Pretreatment of refractory gold ores using cell-free extracts of P. chrysosporium: a preliminary study. Advanced Materials Research. 2013. Vol. 825. pp. 427—430. DOI:10.4028/www.scientific.net/AMR.825.427

44. Konadu K. T., Huddy R. J., Harrison S. T., Osseo-Asare K., Sasaki K. Sequential pretreatment of double refractory gold ore (DRGO) with a thermophilic iron oxidizing archaeon and fungal crude enzymes. Minerals Engineering. 2019. Vol. 138. pp. 86–94. DOI: 10.1016/j.mineng.2019.04.043.

45. Singh D., Chen S. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol. 2008. Vol. 81. pp. 399–417. DOI: 10.1007/s00253—008—1706—9.

46. Feofilova E. P., Mysyakina I. S. Lignin: chemical structure, biodegradation, and practical application (a review). Applied Biochemistry and Microbiology. 2016. Vol. 52. no. 6. pp. 573—581. DOI: 10.1134/S0003683816060053.

47. Simonova V. V., Shendrik T. G., Kuznetsov B. N. Methods of industrial lignins utilization. Zhurnal Sibirskogo federal’nogo universiteta. 2010. Vol. 3. no. 4. pp. 340—354. [In Russ]

48. Ofori-Sarpong, G., Tien, M., Osseo-Asare, K. Myco-hydrometallurgy: Coal model for potential reduction of preg-robbing capacity of carbonaceous gold ores using the fungus, Phanerochaete chrysosporium. Hydrometallurgy. 2010. Vol. 102 (1—4). pp. 66—72. DOI: 10.1016/j.hydromet.2010.02.007.

49. Konadu K. T., Sasaki K., Kaneta T., Ofori-Sarpong G., Osseo-Asare K. Biomodification of carbonaceous matter in gold ores: Model experiments using powdered activated carbon and cell-free spent medium of Phanerochaete chrysosporium. Hydrometallurgy. 2017. V. 168. pp. 76–83. DOI: 10.1016/j.hydromet.2016.08.003.

50. Liu Q., Yang H.-Y., Tong L.-L., Jin Z.-N., Sand W. Fungal degradation of elemental carbon in carbonaceous gold ore. Hydrometallurgy. 2016. −Vol. 160. pp. 90—97. DOI: 10.1016/j.hydromet.2015.12.012.

51. Ofori-Sarpong G., Osseo-Asare K., Tien M. Fungal pretreatment of sulfides in refractory gold ores. Minerals Engineering. 2011. Vol. 24 (6), pp. 499—504 DOI: 10.1016/j. mineng.2011.02.020.

52. Yang H. Y., Liu Q., Chen G. B., Tong L. L. A. Auwalu Bio-dissolution of pyrite by Phanerochaete chrysosporium. Trans. nonferrous Met. Soc. China. 2018. Vol. 28 (4). pp. 766—774. DOI: 10.1016/S1003—6326(18)64709—0.

53. Donald E. Canfield, Erik Kristensen, Bo Thamdrup, The Iron and Manganese Cycles. Advances in Marine Biology, Academic Press, 2005, Vol. 48, 2005, pp. 269—312, DOI: 10.1016/S0065—2881(05)48008—6.

54. Mielke R. E., Pace D. L., Porter T., Southam G. A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology. 2003. Vol. 1. Is. 1. pp. 81—90 DOI: 10.1046/j.1472— 4669.2003.00005.x.

55. Dockrey J. W., Lindsay M. B.J., Mayer K. U., Beckie R. D., norlund K. L.I., Warren L. A., Southam G. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces. Minerals. 2014. 4. pp. 170— 190. DOI: 10.3390/min4010170.

56. Ma Y., Lin C. Pyrite Oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide. Biogeosciences Discussions. 2012. Vol. 9. pp. 557—579DOI: 10.5194/bgd-9—557—2012.

57. Percak-Dennett E.,, He D., Converse B., Konishi H., Xu H., Corcoran A., noguera D., Chan C., Bhattacharyya A., Borch T., Boyd E., Roden E. E. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH. Geobiology. 2017. Vol. 15(5). pp. 690—703. DOI: 10.1111/gbi.12241.

58. Alarcon Leon, E., Rate, A., Hinz, C., & Campbell, G. D. Weathering of sulphide minerals at circum-neutral-pH in semi-arid/arid environments: influence of water content. Supersoils, 2004, University of Sydney, Vol. 1, pp. 1—7.

59. Cecchi G., Piazza S. D., Marescotti P., Zotti M. Evidence of pyrite dissolution by Telephora terrestris Ehrh in the Libiola mine (Sestri Levante, Liguria, Italy). Heliyon. 2019. Vol. 5(8). e02210. DOI: 10.1016/j.heliyon.2019.e02210.

60. Lottermoser B. Mine Water. Mine Wastes. Springer, Berlin, Heidelberg, 2003, pp. 83—141. DOI: 10.1007/978—3-662—05133—7_3.

61. Sklodowska A., Matlakowska R. Bioleaching Of Metals In Neutral And Slightly Alkaline Environment. Microbial Processing of Metal Sulfides. Springer, Dordrecht. 2007, pp. 121—129. DOI: 10.1007/1—4020—5589—7_6.

62. Ostrowski M, Sklodowska A. Bacterial and chemical leaching pattern on copper ores of sandstone and limestone type. World J Microbiol Biotechnol. 1993. Vol. 9. pp. 328−333. DOI: 10.1007/BF00383073.

63. Chaerun S. K., Putri F. Y., Mubarok M. Z., Minwal W. P., Ichlas Z. T. Bioleaching of supergene porphyry copper ores from sungai mak gorontalo of Indonesia by an ironand sulfur-oxidizing mixotrophic bacterium. Solid State Phenomena. 2017. 262 SSP. pp. 20—23. DOI: 10.4028/www.scientific.net/SSP.262.20.

64. Mubarok M. Z., Winarko R., Chaerun S. K., Rizki I. N., Ichlas Z. T. Improving gold recovery from refractory gold ores through biooxidation using iron-sulfur-oxidizing/sulfur-oxidizing mixotrophic bacteria. Hydrometallurgy. 2017. V. 168. −P. 69–75. DOI: 10.1016/j. hydromet.2016.10.018.

65. Cui X., Wang X., Li Y., Lu A., Hao R., Wang C., Ding H. Bioleaching of a Complex Co-Ni-Cu Sulfide Flotation Concentrate by Bacillus megaterium QM B1551 at Neutral pH. Geomicrobiology Journal. 2016. Vol. 33(8). pp. 734—741, DOI: 10.1080/01490451.2015.1085470.

66. Cui X., Gu Q., Liu X., Lu A., Ding H., Yang F., Shang H., Wu B., Zhang M., Wang X. Contact-bioleaching mechanism of Ni and Co from sulfide concentrate at neutral pH by heterotrophic bacteria. Mining, Metallurgy & Exploration. 2018. Vol. 35. pp. 221–229 DOI: 10.19150/mmp.8599.

67. Purnomo I., Chaerun S. K., Mubarok M. Z. Biooxidation pretreatment of low grade refractory gold tailings using a sulfur-oxidizing mixotrophic bacterium. IOP Conference Series: Materials Science and Engineering. 2019. 478(1). 012020. DOI: 10.1088/1757— 899X/478/1/012020.

68. Chaerun S. K., Putri E. A., Mubarok M. Z. Bioleaching of indonesian galena concentrate with an ironand sulfur-oxidizing mixotrophic bacterium at room temperature. Front. Microbiol. 2020. Vol. 11. 557548. DOI: 10.3389/fmicb.2020.557548.

69. Ashok D., Gordon B. W., Osborne R. C. The Past and the Future of Nickel Laterites. PDAC 2004 International Convention, Trade Show & Investors Exchange. 2004.

70. Mudd G. M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews. 2010. Vol. 38. pp. 9–26. DOI: 10.1016/j. oregeorev.2010.05.003.

71. Kyle J. Nickel laterite processing technologies where to next?. ALTA 2010 Nickel/ Cobalt/Copper Conference, 24 -27 May, Perth, Western Australia.

72. Stanković S., Stopić S., Sokić M., Marković B., Friedrich B. Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical and Materials Engineering. 2020. Vol. 26(2). pp. 199—208. DOI: 10.30544/513.

73. Keskinkilic E. Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route. Metals. 2019. 9. 974. DOI:10.3390/met9090974.

74. Oxley A., Smith M. E., Caceres O. Why heap leach nickel laterites? Minerals Engineering. 2016. Vol. 88. pp. 53—60. DOI: 10.1016/j.mineng.2015.09.018.

75. Meshram P, Abhilash, Pandey B. D. Advanced Review on Extraction of Nickel from Primary and Secondary Sources. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 40:3. pp. 157—193, DOI: 10.1080/08827508.2018.1514300.

76. McDonald R. G., Whittington B. I. Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy. 2008. Vol. 91(1–4). pp. 56–69. DOI: 10.1016/j.hydromet.2007.11.010.

77. du Plessis C. A., Slabbert W., Hallberg K. B., Johnson D. B. Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy. 2011. −Vol. 109. pp. 221—229. DOI: 10.1016/j.hydromet.2011.07.005.

78. Johnson D. B., du Plessis C. A. Biomining in reverse gear: Using bacteria to extract metals from oxidised ores. Minerals Engineering. 2015. Vol. 75. pp. 2—5. DOI: 10.1016/j. mineng.2014.09.024.

79. Valix M., Usai F., Malik R. Fungal bioleaching of low-grade laterite ores. Minerals Engineering. 2001. Vol. 14(2). pp. 197—203. DOI: 10.1016/S0892—6875(00)00175—8.

80. Nasab M. H., noaparast M., Abdollahi H., Amoozegar M. A. Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy. 2020. Vol. 193. 105309. DOI: 10.1016/j.hydromet.2020.105309.

81. Hallberg K. B., Grail B. M., du Plessis C., Johnson D. B. Reductive dissolution of ferric iron minerals: a new approach for bioprocessing nickel laterites. Minerals Engineering. 2011. Vol. 24. pp. 620—624. DOI: 10.1016/j.mineng.2010.09.005.

82. Johnson D. B., Grail B. M., Hallberg K. B. A new direction for biomining: extraction of metals by reductive dissolution of oxidised ores. Minerals. 2013. Vol. 3. pp. 49—58. DOI: /10.3390/min3010049.

83. Ňancucheo I,, Grail B. M., du Hilario F., Plessis C., Johnson D. B. Extraction of copper from an oxidised (lateritic) ore using bacterially-catalysed reductive dissolution. Appl. Microbiol. Biotechnol. 2014. Vol. 98. pp. 6297—6305. DOI: 10.1007/s00253—014— 5687-6.

84. Marrero J., Coto O., Goldmann S., Graupner T., Schippers A. Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions using Acidithiobacillus species. Environmental Science and Technology. 2015. Vol. 49(11). pp. 6674—6682. DOI: 10.1021/acs.est.5b00944.

85. Smith S. L., Grail B. M., Johnson D. B. Reductive bioprocessing of cobalt-bearing limonitic laterites. Minerals Engineering. 2017. Vol. 106. pp. 86—90. DOI:10.1016/j. mineng.2016.09.009.

86. Marrero J., Coto O., Schippers A., Anaerobic and aerobic reductive dissolutions of iron-rich nickel laterite overburden by Acidithiobacillus. Hydrometallurgy. 2017. Vol. 168.− pp. 49—55. DOI: 10.1016/j.hydromet.2016.08.012.

87. Santos A.L, Dybowska A., Schofield P. F., Herrington R. J., Johnson D. B. Sulfurenhanced reductive bioprocessing of cobalt-bearing materials for base metals recovery. Hydrometallurgy. 2020. Vol. 195. 105396. DOI: 10.1016/j.hydromet.2020.105396.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.