Technical control of multistage pump balance ring

Authors: Ovchinnikov N P

The critical equipment in underground mineral mining is multistage pumps. In Russian mines, one of the causes of premature limit condition of a multistage pump is violate breakdown of its basic parts. Breakdowns usually result from operation of a multistage pump at a critical axial thrust of its rotor because of failure of the balance ring. The common technical control of the balance ring means the real-time monitoring of the axial thrust of the pump rotor. The thrust of the rotor is measured by a special detector clamped on the shaft of the multistage pump. The underground mining practice of ALROSA shows that these detectors are not always an efficient technical solution. Frequent failures of the detectors and their complex re-setting may be the main causes of incorrectness of the readings. A new diagnostic criterion is proposed for the technical state estimation of balance rings. A case-study of multi-stage pumps in Udachny Mine reveals that the best well-founded technical solution is the balance ring estimation using the diagnostic criterion of the value of water passage in the pump unloading pipe. It is expedient to control the quantity changes in the water passage using vibration measurement instruments.

Keywords: kimberlite mine, multistage pump, wear, axial thrust, feed, bearing, temperature, unloading unit, vibration.
For citation:

Ovchinnikov N. P. Technical control of multistage pump balance ring. MIAB. Mining Inf. Anal. Bull. 2023;(10):56-73. [In Russ]. DOI: 10.25018/0236_1493_2023_10_0_56.

Issue number: 10
Year: 2023
Page number: 56-73
ISBN: 0236-1493
UDK: 621.671.22
DOI: 10.25018/0236_1493_2023_10_0_56
Article receipt date: 12.01.2023
Date of review receipt: 10.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.09.2023
About authors:

N.P. Ovchinnikov, Cand. Sci. (Eng.), Assistant Professor, Director, M.K. Ammosov North-Eastern Federal University, 677000, Yakutsk, Republic of Sakha, Russia, e-mail:, ORCID ID: 0000-0002-4355-5028.


For contacts:

1. Ovchinnikov N. P. One of the ways increase the durability of the sectional pump balancing ring. Journal of Mining Institute. 2021, vol. 248, pp. 312—318. [In Russ]. DOI: 10.31897/ PMI.2021.2.15.

2. Dolganov A. V., Islentyev A. O., Toropov E. Yu., Churakov E. O. Analysis of effectiveness of dumping devices of mine centrifugal sectional pumps. News of the Ural State Mining University. 2014, no. 2(34), pp. 31—35. [In Russ].

3. Timohin Yu. V., Palamarchuk T. N. The research results of the axial forces of the rotor and automatic settings. Sbornik nauchnykh trudov Donetskogo instituta zheleznodorozhnogo transporta. 2017, no. 45, pp. 32—42. [In Russ].

4. Palamarchuk N. V., Timokhina V. Yu., Palamarchuk T. N. Causes of unsatisfactory operation of the automatic balancing devices of centrifugal high-pressure pumps. Sbornik nauchnykh trudov Donetskogo instituta zheleznodorozhnogo transporta. 2016, no. 42, pp. 65—71. [In Russ].

5. Pronyakin V. I. Diagnostic features in the assessment of the technical condition of machines and mechanisms. BMSTU Journal of Mechanical Engineering. 2016, no. 10, pp. 64—72. [In Russ].

6. Stan M. On the durability of centrifugal pumps. Fiability and Durability. 2018, no. 1, pp. 193—198.

7. Maiba I. A., Glazunov D. V., Lyashchenko A. M. Calculating the reliability of rolling stock during normal operation. Problemy mashinostroeniya i nadezhnosti mashin. 2022, no. 2, pp. 33—40. [In Russ]. DOI: 10.31857/S0235711922020092.

8. Makhutov N. A., Gadenin M. M. Analysis and control of the strength, useful life, and safe operation risks of power plants with various kinds of energy commodities. Problemy mashinostroeniya i nadezhnosti mashin. 2022, no. 1, pp. 47—56. [In Russ]. DOI: 10.31857/ S0235711922010060.

9. Ovchinnikov N. P. The development of an operative diagnostic method of the limiting technical condition of the sectional pump hydraulic balancing. Procedia Structural Integrity. 2019, vol. 20, pp. 113—118. DOI: 10.1016/j.prostr.2019.12.125.

10. Ovchinnikov N. P. Assessment of the degree of in uence of the solid phase of mine wateron the durability of the hydraulic foot assembly of the sectional pump of the main drainage plant of the Udachny mine. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 494—500. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-494-500.

11. Ovchinnikov N. P. Assessment of mine water solid phase impact on section pumps performance in the development of kimberlite ores. Mining Science and Technology (Russia). 2022, no. 7(2), pp. 150—160. DOI: 10.17073/2500-0632-2022-2-150-160.

12. Patel M., Kumar A., Pardhi B., Pal M. Abrasive, erosive and corrosive wear in slurry pumps — a review. International Research Journal of Engineering and Technology. 2020, vol. 7, no. 3, pp. 2188—2195.

13. Shen Z., Li R., Han W., Quan H. Erosion wear in impeller of double-suction centrifugal pump due to sediment flow. Journal of Applied Fluid Mechanics. 2020, vol. 13, no. 4, pp. 1131—1142. DOI: 10.36884/jafm.13.04.30907.

14. Bratu P., Dragan N., Dobrescu C. Dynamic performances of technological vibrating machines. Symmetry. 2022, vol. 14, no. 3, article 539. DOI: 10.3390/sym14030539.

15. Bratu P. Multibody system with elastic connections for dynamic modeling of compactor vibratory rollers. Symmetry. 2020, vol. 12, no. 10, article 1617. DOI: 10.3390/sym12101617.

16. Guericke P. B. Pumping equipment of Kuzbass processing plants — the object of technical condition diagnostics. Bulletin of the Kuzbass State Technical University. 2013, no. 5(99), pp. 114—116. [In Russ].

17. Gericke P. B., Nikitin A. G. Vibration-based diagnostics of centrifugal pumps. Vestnik of safety in coal mining scientific center. 2020, no. 4, pp. 83—89. [In Russ].

18. Guericke P. B. Vibration analyses of the aspiration systems dynamic equipment operated at Kuzbass coal washing plants. Vestnik of safety in coal mining scientific center. 2015, no. 4, pp. 73—78. [In Russ].

19. Melkonyan A. L., Chuklin M. V. The influence of flowing fluid on the vibration of the pipeline. Transactions of the Krylov state research centre. 2021, no. S1, pp. 144—146. [In Russ]. DOI: 10.24937/2542-2324-2021-1-S-I-144-146.

20. Melkonyan A. L., Chuklin M. V. Calculation algorithm and software for pipeline vibrations with consideration of internal flow. Transactions of the Krylov state research centre. 2020, no. S2, pp. 260—265. [In Russ]. DOI: 10.24937/2542-2324-2020-2-S-I-260-265.

21. Apuhtin P. A., Voytkunskiy Ya. I. Soprotivlenie vody dvizheniyu sudov [Water resistance to ship traffic], Leningrad, Mashgiz, 1953, 356 p.

22. Sokolov M. A. Comparison of ways to represent the dependence of the kinematic viscosity of fresh water on temperature. Transactions of the Krylov state research centre. 2020, vol. 1, no. 391, pp. 42—49. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.