Lower size grade limits in ore pretreatment using X-ray fluorescent separation

The information-based dressing is a promising approach to coarse mineral processing. The use of surface indicators of separation in such information-based dressing techniques as optical, X-ray luminescence and, specifically, X-ray fluorescence processing, dictates justification of size grade boundaries since, given a similar composition of elements, this is the size that has influence on the separation indicator value—spectral ratio (analytical parameter). The aim of this study is to find admissible limits for size grades for separators using collimatortype measurement systems. In the framework of the studies, separation tests were carried out on X-ray fluorescent separator SRF-100l and with test material represented by artificial samples of different size and different mass factions of components. The subsequent mathematical processing of the results included the analysis of the spectral ratio as the surface indicator of separation and the calculation of variation factor of this value. The studies have found that the lower size limit should be not lower than the half length of the collimator. In this case, the influence of the average linear size of a particle on the measurement accuracy of the particle composition is reduced. The results can be use in selecting machine size grades for materials to be processed on collimator-type X-ray fluorescent separators.

Keywords: X-ray fluorescent separation, size grade, measurement geometry, spectral ration, analytical parameter, variation factor, lower size grade limit.
For citation:

Ovchinnikova T. Yu., Efremova T. A., Tsypin E. F. Lower size grade limits in ore pretreatment using X-ray fluorescent separation . MIAB. Mining Inf. Anal. Bull. 2021;(11-1):328— 337. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_328.

Acknowledgements:
Issue number: 11
Year: 2021
Page number: 328-337
ISBN: 0236-1493
UDK: 622.725 : 535.3
DOI: 10.25018/0236_1493_2021_111_0_328
Article receipt date: 26.05.2021
Date of review receipt: 17.09.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

Ovchinnikova T. Yu.1, Cand. Sci. (Eng.), Associate Professor at the Mineral Processing Department, tatyana.ovchinnikova@m.ursmu.ru;
Efremova T. A.2, Researcher of the Nonferrous Metal Ore and Manmade Waste Processing Laboratory, efremova_ta@umbr.ru;
Tsypin E. F.1, Dr. Sci. (Eng.), Professor at the Mineral Processing Department, tsipin.e@ mail.ru;
1 Ural State Mining University, 620144, Yekaterinburg, Kuibyshev St., 30. Russia;
2 Uralmekhanobr, 620144, Yekaterinburg, Khokhryakov St., 87, Russia.

 

For contacts:
Bibliography:

1. Bocharov V. A., Ignatkina V. A. Tekhnologiya obogashcheniya poleznykh iskopayemykh [Mineral dressing technology], vol. 1. Moscow, Ruda i metally Publishing House, 2007, 472 pp. [In Russ]

2. Maksimov I. I. Obogashcheniye Rud [Mineral Dressing]. XXVII Mezhdunarodnyy kongress po obogashcheniyu (chast 1) [The XXVII International Congress on Mineral Dressing (Part 1)], 2015, no. 3, pp. 3—11. DOI: 10.17580/or.2015.03.01. [In Russ]

3. Maksimov I. I. Baranov V. F., Bogdanovich А. V., Kibirev V. I. Obogashcheniye Rud [Mineral Dressing]. XXVII Mezhdunarodnyy kongress po obogashcheniyu (chast 2) [The XXVII International Congress on Mineral Dressing (Part 2)], 2015, no. 6, pp. 50—58. DOI: 10.17580/or.2015.06.10. [In Russ]

4. Härkki K. Overcoming sustainability challenges of future concentrator plants. Proceedings of the XXVII International Mineral Congress. Santiago, Chile, 2014, Chapter 1, Plenary Presentations, pp. 2—22.

5. Gleeson D. Preceding processing. International Mining. March, 2019, pp. 82—87.

6. Tsypin E. F., Efremova T. A., Ovchinnikova T. Yu., Elizarov D. B. [Cluster of information methods of mineral dressing]. MIAB. Mining Inf. Anal. Bull. no.10, 2017, pp. 483—492. [In Russ]

7. Kolacz J. Sensor based sorting with signal pattern recognition: The new powerful tool in mineral processing. Proceedings of the XXVII International Mineral Congress. Santiago, Chile, 2014. Chapter 16, Classification, screening and sorting, pp. 106—115.

8. Kobzev A. S. Development trends and problems related to sensor-based mineral sorting. Obogashcheniye Rud [Mineral Dressing], 2013, no. 1, pp. 13—17. [In Russ]

9. Tatarnikov A. P., Asonova N. I., Balkina I. G., Naumov M. E., Konovalov G. N., Voevodin I. V. Modern technologies and equipment for radiometric concentration of uranium ores. Gornyi Zhurnal [Mining Journal], 2007, no. 2, pp. 85—87. [In Russ]

10. Yakovlev V. N., Makalin I. A., Ivanov F. V. Improvement of diamond recovery and selectivity of the X-ray luminescence separation in the course of processing diamond bearing ores. Gornoye oborudovaniye i elektromekhanika [Mining equipment and electrical engineering], 2009, no. 6. pp. 50—53. [In Russ]

11. Alushkin I. V., Shchipchin V. B., Korneev I. G. TOMRA Sorting X-ray radiometric separation for preliminary coal preparation. Ugol’ [Coal], 2014, no. 5, pp. 100—103. [In Russ]

12. Ryabkin V. K., Litvintsev E. G., Tikhvinskii A. V., Korpenko I. A., Pichugin A. N., Kobzev A. S. Polychrome photometric separation of gold bearing ores. Gornyi Zhurnal [Mining Journal], 2007, no. 12. pp. 88—92. [In Russ]

13. Revnivtsev V. I. Photometric sorting as a new promising method of mineral dressing. Tsvetnyye metally [Non-ferrous metals], 1969, no. 5. pp. 25—31. [In Russ]

14. Fedorov Yu. O., Katser I. U., Korenev O. V., Korotkevich V. A., Tsoy V. P., Kovalev P. I., Fedorov M. Yu., Popovskiy N. S. Experience and practice of X-ray radiometric separation of ores. Izvestiya Vuzov Gornyy Zhurnal [Proceedings of higher schools. Mining Journal], 2005, no. 5, pp. 21—37. [In Russ]

15. Sanakulov K. S., Rudnev S. V., Kantsel A. V. On the possibility of the Uchkulach deposit development by means of the technology of X-ray radiometric processing of leadzinc ores. Gornyy Vestnik Uzbekistana [Mining Bulletin of Uzbekistan], 2011, no. 1 (44). pp. 17—20. [In Russ]

16. Lixia Lia, Genzhuang Lib, Huaizhe Lic, Guoqing Lib, Ding Zhangc, Bern Klein Bench-scale insight into the amenability of case barren copper ores towards XRF-based bulk sorting. Minerals Engineering, Volume 121, 1 June 2018, pp. 129—136.

17. Starchik L. P., Kasyan V. T. Rational size classes for radiometric separation of lumpy iron ores. Izvestiya Vuzov. Gornyy Zhurnal [Proceedings of higher schools. Mining Journal], 1985, no 2, pp. 107—112. [In Russ]

18. Tsypin E. F., Ental’tsev E. V., Shemyakin V. S., Skopov S. V., Fedorov Y. O., Pestov V. V. Mineral dressing by X-ray radiometric separation. Stal’ [Steel], 2009, no. 6. pp. 75—78.

19. Sanakulov K. S., Rudnev S. V. Complex for X-ray radiometric enrichment of the Kokpatas field sulphide bearing ores. Gornyy Vestnik Uzbekistana [Mining Bulletin of Uzbekistan], 2010, no. 1 (40). pp. 3—7. [In Russ]

20. Lagov B. S., Lagov P. B. Radiometricheskaya sortirovka i separatsiya tvyordykh poleznykh iskopayemykh [Radiometric sorting and separation of solid minerals]. Moscow, Uchyoba Publ., 2007, pp.155. [In Russ]

21. Tsypin E. F., Efremova T. A., Ovchinnikova T. Yu., Elizarov D. B. The effect of size fractionation on the efficiency of X-ray radiometric separation of polymetallic ore. Obogashchenyie Rud [Mineral Dressing], 2018, no. 3, pp. 13—17. DOI: 10.17580/ or.2018.03.03 [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.