On the advantages and disadvantages of the extrapolation method and of correlation and regression analysis for predicting the volume of waste generation of enterprises of the mineral resource complex

The scientific article is devoted to the application of forecasting methods (extrapolation and correlation and regression analysis) for forecasting the volume of waste of mineral complex enterprises. The definition of the term mineral resource complex, formulated by the authors on the basis of other known definitions, is given. A review of possible directions of using the mentioned forecasting methods is made. The analysis of official statistical data on the dynamics of changes in the volume of production waste and the volume of finished products for iron ore enterprises in the Sverdlovsk region for the period from 2010 to 2020 has been carried out. The goals and objectives of the study are defined. The conclusions about the distorted nature of statistical reporting in terms of changes in the volume of waste generation and the volume of production of finished products are made. The advantages and disadvantages of methods of extrapolation and correlation and regression analysis for forecasting the volume of waste generation are revealed and analyzed from the position of applicability to enterprises of the mineral and raw materials complex. The conclusion about the necessity of taking into account the factors specific to the enterprises of the mineral-raw-materials complex when making the forecast is made. The conclusions about the possible directions of application of the results of forecasting the volume of waste generation by enterprises of the mineral complex have been made. The basic factors influencing the volume of production wastes formation, characteristic for the enterprises of mineral complex is substantiated.

Keywords: Forecasting the volume of waste generation, production and consumption waste, mineral resource complex, extrapolation method, correlation and regression analysis method, minerals, iron ore industry enterprises, official statistics data.
For citation:

Tseytlin E. M., Grebneva A. A. On the advantages and disadvantages of the extrapolation method and of correlation and regression analysis for predicting the volume of waste generation of enterprises of the mineral resource complex. MIAB. Mining Inf. Anal. Bull. 2022;(11-1):80—94. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_80.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 80-94
ISBN: 0236-1493
UDK: 504.064.2
DOI: 10.25018/0236_1493_2022_111_0_80
Article receipt date: 16.06.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

Tseytlin E. M.1, Cand. Sci. (Geol. Mineral.), Docent, Associate Professor of the Environmental Engineering Chair, e-mail: tseitlin.e.m@gmail.com;
Grebneva A. A.1, master’s degree in the direction of training 20.04.01 “Technosphere safety” orientation (profile) “Environmental management of enterprises and territories”, OHNIR engineer, e-mail: grebneva291@gmail.com;
1 Ural State Mining University, 30, Kuibyshev Str., Ekaterinburg, 620014, Russia.

 

For contacts:
Bibliography:

1. Tseytlin E. M. Research, assessment and optimization of environmental safety level in conditions of mining production: at the example of the Middle Urals: the author’s abstract ... D. in Geology and Mineralogy: 25.00.36. E. M. Tseytlin; [Place of protection: Urals State Mining University]. Ekaterinburg, 2013. 194 p.: ill. RSB BD, 61 13−4/85Materials of the Pskov region website. Mineral resource complex https://pskov.ru/region/resursy/mineraly.

2. Antoninova N. Yu., Rybnikova L. S., Slavikovskaya Yu. O., Shubina L. A. Ecological and economic aspects of the choice of directions of rehabilitation of territories of industrial waste of the mining-metallurgical complex. Gornaya Promyshlennost’. 2022. no. S1. pp. 71−77. DOI 10.30686/1609-9192-2022-1S-71−77.

3. Kornilkov S. V., Rybnikova L. S., Rybnikov P. A., Smirnov A. Yu. Geoinformation monitoring for solving environmental problems of mining territories of the Middle Urals. Mining. 2022. no. S1. pp. 127−133. DOI 10.30686/1609-9192-2022-1S-127−133.

4. Komkov N. I., Eroshkin S. Yu. Methodological foundations of forecasting technological development. Scientific works: Institute of National Economic Forecasting of the Russian Academy of Sciences. 2006. Vol. 4. pp. 176−206.

5. Kholova A. R., Vozhdaeva Yu. S., Melnitsky I. A., Kiyekbaev R. I., Serebryakov P. V., Mulodzhanov T. T., Beloliptsev I. I., Kontor E. A. The use of regression and neural network modeling in industrial enterprise production monitoring. Ecology and industry of Russia. 2021. Vol. 25. no.5. pp. 58−64 https://doi.org/10.18412/1816-0395-2021-5-58−64.

6. Khokhryakov A. V., Studenok G. A., Studenok A. G., Olkhovsky A. M. The choice of the method of environmental protection from pollution during the extraction of asbestoscontaining ore. New refractories. 2020. no. 8. pp. 66−71. https://doi.org/10.17073/1683-45182020-8-66−71.

7. Baryshnikova L. P., Kondrashova O. A. forecast of the macroeconomical process of coke production in conditions of uncertainty. Bulletin of Donetsk State University of management. 2013. Vol. 66. no. 4. pp. 198−204.

8. Kokovin P. A. Demographic factor on the way to sustainable development of the territory. Agrarian Bulletin of the Urals. 2017. VOL. 157. no. 03. pp. 67−74.

9. Valishina A. M., Yaparova-Abdulkhalikova G. I. Forecasting the volume of agricultural production in the Republic of Bashkortostan. Topical issues of the economy of the region: analysis, diagnostics and forecasting: materials of the VI International Student Scientific and Practical Conference. Nizhny Novgorod. 2016. pp. 287−289

10. Gasumov E. R. Forecasting the time of flooding and self-drilling of gas wells (on the example of the Cenomanian deposit). Eurasian Union of Scientists. 2020. Vol. 5. no. 8. pp. 19−22. DOI 10.31618/ESU.2413−9335.2020.5.77.994

11. Yin H., Hu D., Yan Y., Peng L., Wang K., Zhang K., Deng, M. Study on the transport correlation method of PM2.5 at urban scale-taking beijing as an example. Zhongguo Huanjing Kexue/China Environmental Science. 2022. V. 42. no. 2. pp. 550−556

12. Gridina E. B., Pasynkov A. V., Andreev R. E. Comprehensive approach to managing the safety of miners in coal mines. Paper presented at the Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects 11th Conference of the RussianGerman Raw Materials, 2018. 2019. P. 85−94

13. Shinkevich, A. I., Baygildin, D. R., & Vodolazhskaya, E. L. Management of a sustainable development of the oil and gas sector in the context of digitalization. Journal of Environmental Treatment Techniques. 2020. V. 8. no. 2. pp. 639−645

14. Shalimova A. V., Filin A. E. Development of a mathematical model for forecasting industrial injuries in mining. Mining Information and Analytical Bulletin. 2021. no. 2−1. pp. 209−219. DOI 10.25018/0236-1493-2021-21−0-209−219

15. Zhang B., Yang T., Hong H., Cheng G., Yang H., Wang T., & Cao D. Research on long short-term decision-making system for excavator market demand forecasting based on improved support vector machine. Applied Sciences. 2021. Vol. 11. no. 14. https://doi. org/10.3390/app11146367.

16. Plakitkin, Yu.A. Economics and global energy: the forecast of prices for the main energy carrier. Energy policy. 2012. no. 5. pp. 29−39.

17. Lomov I. I., Vakhrusheva M. Yu. Forecasting in economics using interpolation polynomials. Topical issues of the regional economy: analysis, diagnostics and forecasting: materials of the VI International Student Scientific and Practical Conference, Nizhny Novgorod, April 06, 2016. Nizhny Novgorod: Stimul-ST. 2016. pp. 63−65.

18. Zubarev N. Yu., Fedulova D. D. Forecasting demographic indicators in the field of population fertility: inertial forecast versus forecast based on machine learning. Ars Administrandi. The art of management. 2021. Vol. 13. no. 2. pp. 204−221. DOI 10.17072/2218-9173-2021-2-204−221.

19. Rana N. M., Ghahramani N., Evans S. G., Small A., Skermer N., McDougall S., Take, W. A. Global magnitude-frequency statistics of the failures and impacts of large waterretention dams and mine tailings impoundments. Earth-Science Reviews. 2022. V. 232. no. 3. doi:10.1016/j.earscirev.2022.104144.

20. Vilca Y. C., Ortiz C. E. A., Lana M. S., Pereira F. C., Canabrava R. L. P., Chaves S. S., Lima T. C. A. Geostatistical analyses applied to estimating geotechnical parameters-study case: Córrego do sítio mine. Paper presented at the Rock Mechanics for Natural Resources and Infrastructure DevelopmentProceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, ISRM 2019. 2020. pp. 2926−2933.

21. Babokin G. I., Sprecher D. M., Kolesnikov E. B. Method of improving the safe operation of mining electrical equipment by predicting the insulation resistance. Mining Information and Analytical Bulletin. 2020. no. 2. pp. 34−45. DOI 10.25018/0236-14932020-2-0−34−45.

22. Temkin I. O., Klebanov D. A., Deryabin S. A., Konov I. S. Construction of intelligent geoinformation system of mining enterprise using methods of predictive analytics. Mining Information and Analytical Bulletin. 2020. no. 3. pp. 114−125. DOI 10.25018/0236-14932020-3-0−114−125.

23. Korchak P. A. Geomechanical prediction of brittle fracture zones in the vicinity of the conjugation of mine workings in an overstressed rock massif. Mining Information and Analytical Bulletin. 2021. no. 5. pp. 85−98. DOI: 10.25018/0236_1493_2021_5_0_85.

24. Tatarkin A. V. Methods for predicting ground surface failures by the example of the Verkhnekamskoye potassium-magnesium salt deposit. Mountain Information and Analytical Bulletin. 2020. no. 1. pp. 121−132. DOI 10.25018/0236-1493-2020-1-0−121−132.

25. Boltyirov V., Panyak S., Storojenko L., Degtyarev S. Monitoring of Hazardous Geological Processes in the Urals. Engineering and Mining Geophysics 2019 15th Conference and Exhibition. European Association of Geoscientists & Engineers, 2019. Vol. 2019. no. 1. pp. 412–419. DOI: 10.3997/2214−4609.201901734.

26. Lontsikh P. A., Eliseev S. V. Trend forecasting and quality systems control. The system. Methods. Technologies. 2012 no. 4 (16). pp. 29−35.

27. Davaakhuu N., Potravny I. M., Tishkov S. V., Kulakov K. A. Modeling mining company activities under conditions of resource base depletion: Ecological-and-economic aspect. Gornyi Zhurnal. 2019. no. 8

28. Pisarenko V. P. Investigation of models for predicting the values of concentrations of pollutants in the environmental monitoring system. Naukosphere. 2020. no. 9. pp. 19−25.

29. Khoshouei M., Jalalian M. H., Bagherpour R. The effect of geological properties of dimension stones on the prediction of specific energy (SE) during diamond wire cutting operations. Rudarsko-geološko-naftni zbornik. 2020. no. 35 (3). pp. 17−27. https://doi. org/10.17794/rgn.2020.3.2.30.

30. Moniri-Morad A., Pourgol-Mohammad M., Aghababaei H., Sattarvand J. Reliabilitybased regression model for complex systems considering environmental uncertainties. Probabilistic Safety Assessment and Management. Los Angeles. September, 2018. URL: https://www.researchgate.net/publication/329872255_Reliability-based_regression_ model_for_complex_systems_considering_environmental_uncertainties (дата обращения: 21.10.2022).

31. Boltyrov V. B., Storozhenko L. A., Sapsay M. A. Cumulative ecological impact in the territory of long-term disposal of old mining waste. MIAB. Mining Inf. Anal. Bull. 2021;(5−2):202−217. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_202.

32. Huang, D., Liu, Z., Wang, W. Evaluating the Impaction of Coal Mining on Ordovician Karst Water through Statistical Methods. Water. 2018. no. 10. 1409. https://doi.org/10.3390/ w10101409.

33. Ermakov A. A., Kirillova T. K. Method of step-by-step smoothing of experimental dependencies for short-term prediction problems. Bulletin of Astrakhan State Technical University. Series: Management, computer science and informatics. 2021. no. 3. pp. 126−133. DOI 10.24143/2072-9502-2021-3-126−133. EDN NPSMZA.

34. Vlokh Yu. V. Prospects for the development of the Kachkanarsky GOK. Mining Journal, 2016. no. 7. pp. 46−50. http://rudmet.net/media/articles/Article_MJ_07_16_pp.46−50.pdf

35. Fadeichev A. F. Iron ore base of the Urals (state and prospects of development). Izv. vuzov. Mining magazine. 1993. no. 3. pp. 25−43.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.