Justification of adaptive process flow diagram for low-grade mineral resource preparation for heap leaching

The increased consumption of metals at the simultaneous decrease of the content of useful components in ore predetermines an incremental increase in the volume and rate of mining operations. Such work also produces much low-grade ore which may contain metals. This study analyzes process flow diagrams meant for processing such low-grade mineral resources. The experimental investigation of copper content in large broken fragments of lowgrade ore proved potentiality of processing payable fine fraction rich with useful components. The authors propose a low-waste, resource-saving and adaptive process flow diagram for open pit mining of large ore deposits, with coarse-batch grading and with extraction of payable fine fraction from low-grade mineral raw material. Rock haulage from an open pit is carried out by intermodal transport, and extraction of payable fine fraction is implemented at an improved rehandling point equipped with a jigging screen during reloading of conditionally low-grade ore from dump trucks to conveyors. The produced payable fine fraction is processed by heap leaching with pre-treatment by solutions of high-active oxidizers during heap leach pile formation. Removal of metal-bearing fines from low-grade ore can reduce amount of metal dumping with waste ore approximately by a quarter, and also can mitigate the adverse environmental impact of mining.

Keywords: copper ore, coarse-batch grading, rehandling point, screening, payable fraction, dump truck, conveyor, heap leaching.
For citation:

Cheban A. Yu., Konareva T. G., Litvinova N. M., Qin Y. F. Justification of adaptive process flow diagram for low-grade mineral resource preparation for heap leaching. MIAB. Mining Inf. Anal. Bull. 2025;(4):34-46. [In Russ]. DOI: 10.25018/0236_1493_2025_4_0_34.

Acknowledgements:

The study was carried out using resources of the Share-Use Center for Scientific Evidence Processing and Storage, supported by the Ministry of Science and Higher Education of the Russian Federation, Project No. 075-15-2021-663.

Issue number: 4
Year: 2025
Page number: 34-46
ISBN: 0236-1493
UDK: 622.271
DOI: 10.25018/0236_1493_2025_4_0_34
Article receipt date: 12.09.2024
Date of review receipt: 05.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2025
About authors:

A.Yu. Cheban1, Cand. Sci. (Eng.), Leading Researcher, e-mail: chebanay@mail.ru, ORCID ID: 0000-0003-2707-626X,
T.G. Konareva1, Researcher, e-mail: konar_tat@mail.ru, ORCID ID: 0000-0001-9889-3721,
N.M. Litvinova1, Cand. Sci. (Eng.), Leading Researcher, e-mail: nauka22@yandex.ru, ORCID ID: 0000-0002-8199-1605,
Y.F. Qin, Graduate Student, Heilongjiang University of Science and Technology, Harbin, China, e-mail: qyf18852935131@126.com,
1 Mining Institute of Far East Branch of the Russian Academy of Sciences, 680000, Khabarovsk, Russia.

 

For contacts:

A.Yu. Cheban, e-mail: chebanay@mail.ru.

Bibliography:

1. Trubetskoi K. N., Zakharov V. N., Galchenko Y. P. Naturelike and convergent technologies for developing lithosphere mineral resources. Herald of the Russian Academy of Sciences. 2020, vol. 90, no. 3, pp. 332—337. DOI: 10.1134/S1019331620030065.

2. Gorbacheva V. D., Chmykhalova S. V. The quality control of copper-nickel ores of the Talnakh deposit. Gornyi Zhurnal. 2023, no. 6, pp. 68—72. [In Russ]. DOI: 10.17580/gzh.2023.06.09.

3. Bardentsev V. S., Efimov N. I., Nesterenko D. V., Laptev M. V. Features of development of the Gai deposit of copper-pyrite ores. Gornyi Zhurnal. 2024, no. 5, pp. 14—21. [In Russ].

4. Oganesyan L. V., Mirlin E. G. Issues of resource depletion in earth crust. Russian Mining Industry Journal. 2019, no. 6, pp. 100—105. [In Russ]. DOI: 10.30686/1609-9192-2019-6-148-100-105.

5. Oleynik D. N., Rylnikova M. V., Shvabenland E. E. Improving the legal framework for the mining wastemanagement in Russia. Mineral mining & conservation. 2024, no. 6, pp. 24—35. [In Russ]. DOI: 10.26121/RON.2023.74.6.001.

6. Melnichenko I. A., Kirichenko Yu. V. Development of zoning method for man-made massifs. Russian Mining Industry Journal. 2021, no. 3, pp. 116—122. [In Russ]. DOI: 10.30686/1609-91922021-3-116-122.

7. Cheban A.Yu., Litvinova N. M., Konareva T. G., Rasskazov M. I., Tereshkin A. A. Improvement of pretreatment and extraction technologies for contrast ore in mining structurally complex deposits. MIAB. Mining Inf. Anal. Bull. 2023, no. 12, pp. 28—40. [In Russ]. DOI: 10.25018/0236_1493_2023_12_0_28.

8. Zhang Z. X., Hou D. F., Aladejare A., Ozoji T., Qiao Y. World mineral loss and possibility to increase ore recovery ratio in mining production. International Journal of Mining Reclamation and Environment. 2021, vol. 35, no. 6, pp. 670—691. DOI: 10.1080/17480930.2021.1949878.

9. Mhlongo S. E., Amponsah-Dacosta F., Kadyamatimba A. Development and application of a methodological tool for prioritization of rehabilitation of abandoned tailings dumps in the Giyani and Musina areas of South Africa. Cogent Engineering. 2019, vol. 6, article 1619894. DOI: 10.1080/ 23311916.2019.1619894.

10. Rylnikova M. V., Radchenko D. N., Tsupkina M. V. Evaluation of the influence of hypergenesis during storage of waste of enhancement of copper pyrite ores on the choice of technological schemes of their development. News of the Tula state university. Sciences of Earth. 2023, no. 2, pp. 283—299. [In Russ].

11. Masloboev V. A., Seleznev S. G., Makarov V. D., Svetlov A. V. Assessment of the environmental hazard of storing waste from mining and processing copper-nickel ores. Journal of Mining Science. 2014, vol. 50, no. 3, pp. 559—572. DOI: 10.1134/S106273911403017X.

12. Kaplunov D. R., Rylnikova M. V. Perspective directions of development of combined geotechnology in view of improvement of technological way of mining production. News of the Tula state university. Sciences of Earth. 2019, no. 3, pp. 7—22. [In Russ].

13. Robben C., Wotruba H. Sensor-based ore sorting technology in mining-past, present and future. Minerals. 2019, vol. 9, no. 9, article 523. DOI: 10.3390/min9090523.

14. Rasskazova A. V., Sekisov A. G., Kirilchuk M. S., Vasyanov Y. A. Stage-activation leaching of oxidized copper-gold ore: theory and technology. Eurasian Mining. 2020, no. 1, pp. 52—55. DOI: 10.17580/em.2020.01.10.

15. Robertson S. W., Van Staden P. J., Cherkaev A., Petersen J. Properties governing the flow of solution through crushed ore for heap leaching. Hydrometallurgy. 2022, vol. 208, pp. 1—17. DOI: 10.1016/j.hydromet.2021.105811.

16. Khalezov B. D. Kuchnoe vyshchelachivanie mednykh i medno-tsinkovykh rud [Heap leaching of copper and copper-zinc ores], Ekaterinburg, RIO UrO RAN, 2013, 332 p.

17. Valiev N. G. O., Razorenov Yu. I., Golik V. I., Lebzin M. S. Combination of leaching technologies with conventional ore processing techniques. MIAB. Mining Inf. Anal. Bull. 2024, no. 4, pp. 33—

43. [In Russ]. DOI: 10.25018/0236_1493_2024_4_0_33.

18. Cui F., Mu W., Zhai Y., Guo X. The selective chlorination of nickel and copper from low grade nickel-copper sulfide-oxide ore: Mechanism and kinetics. Separation and Purification Technology. 2020, vol. 239, article 116577. DOI: 10.1016/j.seppur.2020.116577.

19. Lomonosov G. G., Turtygina N. A. Influence of coarse-grained copper-nickel ore raw materials class and its changeability upon the benefication indication. MIAB. Mining Inf. Anal. Bull. 2015, no. 3, pp. 104—107. [In Russ].

20. Shibaeva D. N., Kompanchenko A. A. Preparability of iron ore from Yakovlevo deposit, Kursk Magnetic Anomaly, using coarse particle separation methodsи. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2023, no. 6, pp. 117—129. [In Russ]. DOI: 10.15372/FTPRPI20230611.

21. Cheban A. Yu., Litvinova N. M., Bogomyakov R. V., Kirilchuk M. S. Expanding the raw material base of mines through the concentration of small fractions of sub-conditional ores. Mine Surveying and Subsurface Use. 2023, no. 2, pp. 15—19. [In Russ]. DOI: 10.56195/20793332_2023_2_15_19.

22. Kantemirov V. D., Titov R. S. Optimization of parameters of open-pit screening and dumping stations. News of the Ural State Mining University. 2020, no. 3, pp. 107—114. [In Russ]. DOI: 10.21440/2307-2091-2020-3-107-114.

23. Increasing mine productivity by a cost-effective method using ALLU. Russian Mining Industry Journal. 2020, no. 1, pp. 68—69. [In Russ].

24. Cheban A. Yu. Technology for storage of sub-specific ores with separation of productive fine fractions. News of the Tula state university. Sciences of Earth. 2024, no. 1, pp. 388—398. [In Russ].

25. Lashko V. T. Peregruzochnye punkty pri avtomobil'no-konveyernom transporte na rudnykh kar'erakh [Transfer points for automobile-conveyor transport in ore quarries], Dnepropetrovsk, Poligrafist, 2001, 140 p.

26. Minkin A., Wolpers F. M., Hellmuth T. Overcoming a mines embankment: IPCG system with new belt conveying concept for steep opencast minewalls. Bulk Solids Handling. 2019, vol. 37, no. 2, pp. 18—23.

27. Robben C., Wotruba H. Sensor-based ore sorting technology in mining-past, present and future. Minerals. 2019, vol. 9, no. 9, article 523. DOI: 10.3390/min9090523.

28. Sekisov A. G., Rasskazova A. V., Konareva T. G. Heap leaching of primary and complex copper ore with activation pre-oxidation. Gornyi Zhurnal. 2024, no. 6, pp. 71—76. [In Russ]. DOI: 10.17580/ gzh.2024.06.11.

29. Krylova L. N. Efficiency of ozone application for extraction of metals from mineral raw materials. Russian Journal of Non-Ferrous Metals. 2022, vol. 63, no. 3, pp. 247—255. DOI: 10.3103/ S1067821222030087.

30. Revnivtsev V. I., Azbel' E. I., Baranov E. G. Podgotovka mineral'nogo syr'ya k obogashcheniyu i pererabotke [Preparation of mineral raw materials for enrichment and processing], Moscow, Nedra, 1987, 308 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.