Justification of design factors for linear cable-stayed section of overhead wire rope conveyor of RopeCon® type

The mining industry of late years both in Russia and abroad has increased the number of long and high-duty belt conveyors employed in open pit mines to convey minerals to warehouses or processing plants. An alternative to the customary belt conveyors can be overhead wire rope conveyor RopeCon, which possesses some important advantages: smaller weight per unit length of the conveying line; designability of the conveyor line on a rough terrain; 4 times lower power intake of the conveyor drive. The former two advantages are connected with the design features of the cable-stayed structure of the overhead wire rope conveyor, which sometimes enable setting up cable support towers at a spacing up to 1100 m. The article describes a linear section of the overhead wire rope conveyor RopeCon, which includes a three-strand cable-stayed system composed of two upper load-bearing cables and four guide ropes for travelling rollers of loaded and empty branches of the conveyor. The problem connected with the determination of the cable-stayed system parameters and distribution of loading generated by the belt weight, cargo on the belt and by the weight of the travelling rollers between the strands of the cable-stayed system to ensure firm adherence between the cables and arms of the main frames is solved as a case-study of the loaded and empty conveyor. The analytical expressions are obtained to find the required safety factors for the reliable adherence between the cables and arms of the main frames at different loads of the conveyor belts, and to determine the weights per unit lengths of all cables and their tensions.

Keywords: overhead wire rope conveyor, main frames, support cables, cable-stayed spans, conveyor line, support towers, travelling rollers, cable tension, weight per unit length.
For citation:

Galkin V. I., Dobler M. O., Dyachenko V. P. Justification of design factors for linear cable-stayed section of overhead wire rope conveyor of RopeCon® type. MIAB. Mining Inf. Anal. Bull. 2023;(11):115-127. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_115.

Issue number: 11
Year: 2023
Page number: 115-127
ISBN: 0236-1493
UDK: 622,6.2
DOI: 10.25018/0236_1493_2023_11_0_115
Article receipt date: 31.05.2023
Date of review receipt: 07.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

V.I. Galkin1, Dr. Sci. (Eng.), Professor, e-mail: Vgalkin07@rambler.ru,
M.O. Dobler1, Assistant, e-mail: m.dobler@yandex.ru,
V.P. Dyachenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail: viach.dyachenko@yandex.ru,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

V.I. Galkin, e-mail: Vgalkin07@rambler.ru.


1. Galkin V. I. New RopeCon® belt conveyors, actuality and prospects. Design and operating parameters of special ropeway belt conveyors. MIAB. Mining Inf. Anal. Bull. 2019, no. 6, pp. 136—146. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-136-146.

2. Neradilova N., Stolarik J. RopeСon — progressive transportation system for continuous raw materials transportation. 17th International Multidisciplinary Scientific Geoconference SGEM 2017. Albena, Bulgaria. 2017, pp. 789—796. DOI: 10.5593/sgem2017/13/S03.100.

3. Semenkin A. V. Review of the use of steep-slope conveyors as quarry and mainline transport. Problems of Subsoil Use. 2020, no. 2, pp. 25—36. [In Russ]. DOI: 10.25635/2313-1586.2020.02.025.

4. Diethardt P., Kessler F., Stoschka M. Calculation of the drive power for RopeCon systems. Schüttgut. 2004, vol. 10, no. 4, pp. 288—293.

5. Kromer H. Suspended system of transportation of raw materials for a cement plant in Sudan. Cement and its Applications. 2014, no. 3, pp. 54—56. [In Russ].

6. Fedorko G., Molnár V., Kopas M. Calculation and simulation model of a system RopeCon.TEM Journal. 2018, vol. 7, no. 3, pp. 480—487. DOI: 10.18421/TEM73-02.

7. Pillichshammer C., Trieb H., Flebbe H. RopeCon — the new road conveyor belt. Schüttgut. 2003, vol. 9, no. 2, pp. 108—111.

8. Eremeev P. G., Vedyakov I. I., Kiselev D. B. Posobie po proektirovaniyu visyachikh (vantovykh) konstruktsiy [Manual for the design of hanging (cable-stayed) structures], Moscow, 2020, pp. 148.

9. Jian Q., Liang Q., Jun C., Jiancheng W., Ming J., Chunhua H. Analysis of the working cable system of single-span circulating ropeway. MATEC Web of Conferences. 2017, vol. 136, article 02003. DOI: 10.1051/matecconf/201713602003.

10. Galkin V. I., Dobler M. O. Substantiation of the parameters of the cable-stayed conveyor belt system on RopeCon type suspended ropes. Gornyi Zhurnal. 2022, no. 9, pp. 72—77. [In Russ]. DOI: 10.17580/gzh.2022.09.12.

11. Vorontsov A. N., Volokhovsky V. Yu. Assessment of the strength and resource of ropes of cable-stayed systems. Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsiy i sploshnykh sred: Materialy XXVII Mezhdunarodnogo simpoziuma im. A.G. Gorshkova [Dynamic and technological problems of mechanics of structures and continuous media: Materials of XXVII International Symposium named after A.G. Gorshkov], Мoscow, 2021, pp. 66—68. [In Russ].

12. Lagerev A. V., Tarichko V. I., Lagerev I. A. Determination of optimal parameters of cargo suspended cable cars with different design performance. News of the Tula state university. Technical sciences. 2019, no. 10, pp. 443—451. [In Russ].

13. Mirkin D. R. Vvedenie v mekhaniku gibkoy niti [Introduction to the mechanics of flexible thread], Мoscow, Nauka, 1980, 240 p.

14. Averchenko G. A., Vasiliev K. A., Rudakova E. A. Regulation of efforts in beam-cable systems. Modern Transportation Systems and Technologies. 2021, vol. 7, no. 4, pp. 5—13. [In Russ]. DOI: 10.17816/transsyst2021745-13.

15. Dukel'skiy A. I. Podvesnye kanatnye dorogi i kabel'nye krany [Suspended cable cars and cable cranes], Мoscow-Leningrad, Mashinostroenie, 1966, 484 p.

16. Shumeyko V. I., Karamysheva A. A. Ensuring the rigidity of large-span cable-stayed systems. Aktual'nye problemy nauki i tekhniki—2019: Materialy natsional'noy nauchno-prakticheskoy konferentsii [Actual problems of science and technology — 2019: Proceedings of the National Scientific and Practical Conference], Rostov-na-Donu, DonGTU, 2019, pp. 789—791. [In Russ].

17. Tsypkina V. V., Ivanova V. P., Isamukhamedov D. N. Generalized mathematical model of a suspended cable car providing energy efficiency improvement. Universum: technical sciences. 2021, no. 6-4(87), pp. 90—98. [In Russ]. DOI: 10.32743/UniTech.2021.87.6.12004.

18. Zemskov A. N., Overin A. A., Bekher A. V. Second life for aerial ropeways in mining in Russia and in Central Asia. MIAB. Mining Inf. Anal. Bull. 2019, no. 3, pp. 175—183. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-175-183.

19. Kirsanov M. N. Static calculation of a cable-stayed system. Izvestiya MGTU MAMI. 2013, no. 3(17), pp. 89—93. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.