Justification of parametric and dimensional series of magnetic peristaltic pump units

Authors: Vasilyeva M A

Efficient transportation of highly concentrated mixtures by soil pumps is difficult due to the existing non-linear relationship between efficiency and solids concentration. This necessitates the use of new design and technological solutions — magnetic pumping units. In them, the role of the drive is performed by the working chamber-channel. It is made of a magnetically active elastomer and implements the principle of peristaltic transportation of the hydraulic mixture under the influence of a magnetic activator. Taking into account the specifics of the operations performed for backfilling the goaf, it is necessary to conduct studies of the energy parameters of the equipment. The selection of equipment should be carried out not only from the condition of ensuring the efficiency of the technological process of backfilling the mined-out space, while observing the principle of equipment compactness. The fulfillment of the last condition implies the use of equipment of the smallest permissible, in terms of performance, power. A technique for developing a parametric and standard size range of the equipment being created is presented. The performance of the pumping unit and power consumption are taken as the main parameters of the equipment. The range of values of the preferred nominal power of the section of the magnetic activator of the pump unit obtained as a result of the calculations is recommended for use in the development of design documentation for the creation of mobile stowing complexes.

Keywords: highly concentrated slurry, pumping unit, magnetic activator, parametric series, standard size, performance, rated power, correlation analysis.
For citation:

Vasilyeva M. A. Justification of parametric and dimensional series of magnetic peristaltic pump units. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):70—86. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_70.

Acknowledgements:

The research was carried out with the financial support of the Russian Science Foundation, grant No. 19-79-10151.

Issue number: 12
Year: 2022
Page number: 70-86
ISBN: 0236-1493
UDK: 621.65
DOI: 10.25018/0236_1493_2022_122_0_70
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Vasilyeva M. A., Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Transport and Technological Processes and Machines, http://orcid.org/00000003-2594-74810, St. Petersburg Mining University,199106, St. Petersburg,21st line V. O. 2, Russia, е-mail: saturn.sun@mail.ru. The author declare that there is no conflict of interest.

 

For contacts:
Bibliography:

1. Medvedev V. V., Ovseychuk V. A. Improving the technological properties of the hardening filling mixture. MIAB. Mining Inf. Anal. Bull. 2021, no. 3−2, pp. 71–80. DOI: 10. 25018/0236_1493_2021_32_0_71. [In Russ].

2. Kaplunov D. R., Rylnikova M. V., Arsentiev V. A., Kvitka V. V., Mannanov R. New technology and equipment for high-performance backfilling of mined-out space during underground mining. Mining Journal. 2012, no. 2, pp. 41–43. [In Russ].

3. Grice A. G. Underground mining with backfill. Proceedings of the 2nd annual summit — mine tailings disposal systems, Brisbane, Australia. 1998, pp. 234–239.

4. Sivakugan N., Veenstra R., Naguleswaran N. Underground Mine Backfilling in Australia Using Paste Fills and Hydraulic Fills. Int. J. of Geosynth. and Ground Eng. 2015, no. 1, p. 18. DOI 10.1007/s40891-015-0020-8.

5. Antaya C. L., Adane K. F, Sanders R. S. Modelling Concentrated Slurry Pipeline Flows. Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012, pp. 1659–1671. https://doi.org/10.1115/FEDSM2012−72379.

6. Ovchinnikov N. P., Portnyagina V. V., Dambuev B. I. Establishment of the limiting technical state of a pulp pump without disassembly. Journal of the Mining Institute,2020, no. 241, p. 53. https://doi.org/10.31897/pmi.2020.1.53. [In Russ].

7. Wang L., Han Q. S., Chen D. Y., Wu C. Z., Wang X. Y. Non-linear modelling and stability analysis of the PTGS at pump mode. Renewable Power Generation. 2017, no. 11(6), pp. 827–836. https://doi.org/10.1049/iet-rpg.2016.0707.

8. Kaplunov D. R., Rylnikova M. V., Radchenko D. N., Korneev Yu. Mobile stowing complexes in systems for the development of ore deposits with backfilling of mined-out spaces. Mining journal. 2013, no. 2, pp. 101–104. [In Russ].

9. Thomas Lauterbach. Filling underground voids with piston pumps. Gluckauf. 2006, no. 2(3), pp. 40–44. [In Russ].

10. Atroshchenko V. A. Avksentiev S. Y., Makharatkin P. N., Trufanova I. S. Experimental hydrotransportation unit for testing material resistance of pipelines and parts of dredging pumps to hydro-abrasive wear. Obogashchenie rud. 2021, no. 3, pp. 39–45. https://doi. org/10.17580/or.2021.03.07.

11. Cheremisina O., Sergeev V., Ponomareva M., Ilina A., Fedorov A. Kinetics Study of Solvent and Solid-Phase Extraction of Rare Earth Metals with Di-2-Ethylhexylphosphoric Acid. Metals. 2020, no. 10, p. 687. https://doi.org/10.3390/met10050687.

12. Chernyshov S. E., Galkin V. I., Ulyanova Z. V., McDonald D. I. M. Development of mathematical models for controlling the technological parameters of cement slurries. Journal of the Mining Institute. 2020, no. 242, p. 179. https://doi:10.31897/pmi.2020.2.179. [In Russ].

13. Stone D. The evolution of paste for backfill. Proceedings of the Eleventh International Symposium on Mining with Backfill, Australian Centre for Geomechanics, Perth. 2014, pp. 31–38.

14. Mishra P., Ein-Mozaffari F. Using flow visualization and numerical methods to investigate the suspension of highly concentrated slurries with the coaxial mixers. Powder Technology. 2021, vol. 390, pp. 159–173. https://doi.org/10.1016/j.powtec.2021.05.078.

15. Yang Y., Zhu H. Clustering and modelling of rheological parameters for anaerobic digestion materials (ADMs) and its application for feed pump selection. IOP Conference Series: Earth and Environmental Science. 2020, vol. 467,012053.

16. Alexandrov V. I. Methods for reducing energy consumption during hydraulic transportation of high concentration mixtures. St. Petersburg, SPGGI (TU). 2000,224 p. [In Russ].

17. Hatfield R. G. Maher B. A., Pates J. M., Barker P. A. Sediment dynamics in an upland temperate catchment: Changing sediment sources, rates and deposition. Journal of Paleolimnology. 2008, vol. 40(4), pp. 1143–1158.

18. Kong H., Yu L., Gu Z., Li Z., Ban X., Cheng L., Hong Y., Li C. Fine structure impacts highly concentrated starch liquefaction process and product performance. Industrial Crops and Products. 2021, vol. 164,113347. https://doi.org/10.1016/j.indcrop.2021.113347.

19. Yaghtin M. Yaghtin A., Tang Z., Troczynski T. Improving the rheological and stability characteristics of highly concentrated aqueous yttria stabilized zirconia slurries. Ceramics International. 2020, vol. 46(17), pp. 26991–26999. https://doi.org/10.1016/j. ceramint.2020.07.176.

20. Benderovich V. A., Lunatsi E. D., Nozdrin A. V. and Sheina A. E. Laminar pumps and new technological possibilities. Neftgaz Exposition. 2016, no. 3(49), pp. 44–46. [In Russ].

21. Vasilyeva M. A. Overview of trends in the development of pumping equipment for mining and processing plants. Obogashchenie rud. 2019, no. 1, pp. 51–56. https://doi. org/10.17580/or.2019.01.08. [In Russ].

22. Arsentiev V. A., Vaisberg L. A., Ustinov I. D. The direction of the creation of lowwater technologies and apparatus for the enrichment of finely divided mineral raw materials. Obogashchenie rud. 2014, no. 5(353), pp. 3–9. [In Russ].

23. Werte L. A. Electromagnetic transport of liquid metal. Moscow, Metallurgy. 1965, 236 p. [In Russ].

24. Fuhrer R. Schumacher C. M., Zeltner M., Stark W. J. Soft Iron/Silicon Composite Tubes for Magnetic Peristaltic Pumping: Frequency‐Dependent Pressure and Volume Flow. Adv. Funct. Mater. 2013, vol. 23, pp. 3845–3849. https://doi.org/10.1002/adfm.201203572.

25. Patent of the Russian Federation No No. 2616432,04/14/2017. Vasilieva M. A., Alexandrov V. I., Proskuryakov R. M., Koshkina E. P. Peristaltic mixing pump for highly condensed substances. 2017, bull. № 11. [In Russ].

26. Patent of the Russian Federation No. 2626193,07/24/2017. Vasilyeva M. A., Serzhan S. L. Peristaltic mixing pump for pasty substances. 2017, bull. № 21. [In Russ].

27. Minakov A. V., Rudyak V. Ya., Gavrilov A. A., Dekterev A. A. On optimization of mixing process of liquids in microchannels. Journal of the Siberian Federal University. Mathematics and physics. 2010, no. 3(2), pp. 146–156. [In Russ].

28. Aishan Y., Yalikun Y., Shen Y., Yuan Y., Amaya S., Okutaki T., Osaki A., Maeda S., Tanaka Y. A chemical micropump actuated by self-oscillating polymer gel. Sensors and Actuators, B: Chemical. 2021, vol. 337,129769. https://doi.org/10.1016/j.snb.2021.129769.

29. Nguyen V. Q., Ahmed A. S., Ramanujan R. V. Morphing Soft Magnetic Composites. Adv. Mater. 2012, vol. 24, pp. 4041–4054. https://doi.org/10.1002/adma.201104994.

30. Pan Z. Q., Sun R., Zhu S. L., Kang Y. Z., Huang B. S. The synthesis, characterization and properties of silicone adhesion promoters for addition-cure silicone rubber. Journal of adhesion science and Technology. 2018, vol. 32(14), pp. 1517–1530. https://doi.org/10.108 0/01694243.2018.1428059.

31. Tian T., Nakano M. Fabrication and characterisation of anisotropic magnetorheological elastomer with 45 iron particle alignment at various silicone oil concentrations. Journal of Intelligent Material Systems and Structures. 2018, vol. 29(2), pp. 151–159. https://doi. org/10.1177/1045389X17704071.

32. Qin Y., Li D., Zhu Y., Wang H., Wei X. Influence of geometric factors at runner outlet on the hump characteristics of a pump-turbine. Sustainable Energy Technologies and Assessments. 2022, vol. 51,101890. https://doi.org/10.1016/j.seta.2021.101890.

33. Ivanov S. L., Safronchuk K. A., Olt Yu. Substantiation and choice of design parameters of the gear-eccentric mechanism of a piston lubricating and filling unit for maintenance of mining machines. Journal of the Mining Institute. 2021, no. 248, pp. 290–299. https://doi. org/10.31897/PMI.2021.2.13. [In Russ].

34. Egole C. P., Mgbemere H. E., Sobamowo G. M., Lawal G. I. Micro-macro model for the transient heat and fluid transport in solidification structure evolution during static casting processes. Materials Today Communications. 2021, vol. 28,102613. https://doi.org/10.1016/j. mtcomm.2021.102613.

35. Myrzakhmetov B. A., Krupnik L. A., Sultabaev A. E., Toktamisova S. M. Mathematical model of jet pump operation as part of a downhole tandem installation. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 123–135. https://doi.org/10.25018/0236-1493-2019-08−0-123−135. [In Russ].

36. Povetkin V. V., Kerimzhanova M. F., Orlova E. P., Bukaeva A. Z. Improvement of equipment for slurry transportation in processing. MIAB. Mining Inf. Anal. Bull. 2018, no. 6, pp. 161–169. DOI: 10.25018/0236-1493-2018-6-0-161-169. [In Russ].

37. Alawadhi K., Alzuwayer B., Mohammad T. A., Buhemdi M. H. Design and optimization of a centrifugal pump for slurry transport using the response surface method. Machines. 2021, vol. 9(3), no. 60. https://doi.org/10.3390/machines9030060.

38. Andrii R., Vladimir K., Yevhen M. Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy. 2021, vol. 2181,119432. https://doi. org/10.1016/j.energy.2020.119432.

39. Najib A., Orfi J., Alansary H., Ali E. Application of the Buckingham ∏ Theorem to Model the Multiple Effect Vacuum Membrane Distillation. Journal of Thermal Science and Engineering Applications. 2022, vol. 14(3),031003. https://doi.org/10.1115/1.4051450.

40. Han X.-J. Control System Optimization for Adding Coal Slurry into Circulating Fluidized Bed Boiler. Reneng Dongli Gongcheng. Journal of Engineering for Thermal Energy and Power. 2019, vol. 34(10), pp. 193–198. https://doi.org/10.16146/j.cnki. rndlgc.2019.10.028.

41. Calabrese F., Regattieri A., Bortolini M., Galizia F. G., Visentini L. Feature-based multi-class classification and novelty detection for fault diagnosis of industrial machinery. Applied Sciences. 2021, vol. 11(20),9580. https://doi.org/10.3390/app11209580.

42. Khrustaleva I. N., Lyubomudrov S. A., Larionova T. A., Brovkina Y. Y. Increasing the efficiency of technological preparation for the production of the manufacture components equipment for the mineral resource complex. Journal of the Mining Institute. 2021, no. 249, pp. 417–426. https://doi.org/10.31897/PMI.2021.3.11. [In Russ].

43. Alexandrov V. I., Vasilyeva M. A. Hydrotransport of thickened tailings of iron ore enrichment at the Kachkanar mine according to the results of pilot tests of the hydrotransport system. Journal of the Mining Institute. 2018, no. 233, p. 471. https://doi.org/10.31897/ pmi.2018.5.471. [In Russ].

44. Maddah S., Goodarzi M., Safaei M. R. Comparative study of the performance of air and geothermal sources of heat pumps cycle operating with various refrigerants and vapor injection. Alexandria Engineering Journal. 2020, vol. 59(6), pp. 4037–4047. https://doi.org/ doi:10.1016/j.aej.2020.07.009.

45. Harsem T. T., Nourozi B., Behzadi A., Sadrizadeh S. Design and parametric investigation of an efficient heating system, an effort to obtain a higher seasonal performance factor. Energies. 2021, vol. 14(24),8475. https://doi.org/10.3390/en14248475.

46. Vasilyeva М. А., Volchikhina A. A. Analysis of influence of pipeline roughness dispersion on energy consumption during fluid transportation. Journal of Physics: Conference Series. 2018, vol. 1118(1),012047. https://doi.org/10.1016/j.spl.2021.109297.

47. Matuła P., Adler A. A. Note on exact laws of large numbers for the range of a sample from Pareto-type distributions. Statistics and Probability Letters. 2022, vol. 182,109297. https://doi.org/10.1016/j.spl.2021.109297.

48. Kevei P., Oluoch L., Viharos L. Limit laws for the norms of extremal samples. Journal of Statistical Planning and Inference. 2022, vol. 216, pp. 151–173. https://doi.org/10.1016/j. jspi.2021.06.001.

49. Keay M.-J. An exponential endogenous switching regression with correlated random coefficients. Econometrics. 2022, vol. 10(1),1. https://doi.org/10.3390/econometrics10010001.

50. Soguero-Ruiz C., Mora-Jiménez I., Martínez-Ruiz M. D. P., Rojo-Álvarez J. L., Statistical nonlinear analysis for reliable promotion decision-making. Digital Signal Processing: A Review Journal. 2014, vol. 33, pp. 156–168. https://doi.org/10.1016/j. dsp.2014.06.014.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.