Justification of drill and blast pattern designs for ore treatment before in-situ leaching

The article discusses drill and blast pattern designs for ore treatment before in-situ leaching (ISL) in ore bodies of complex structure with a view to ensuring ecological safety, enhanced ISL efficiency, as well as balanced subsoil protection and management. This is achievable using cut-and-fill method with cemented backfill of different composition and strength, as well as with other geotechnical methods. It is shown that ISL of metals from solid ore requires high-quality preparation of large volume blocks, associated with blasting of tens of tones of explosives at a time. Rock fragmentation by blasting is improved through the higher powder factor to 2.9–3.3 kg/m3, as well as through accumulation of rocks with a degree of fragmentation not less than Kf = 1.2–1.3 in a limited space at the bottom of a stope. A case study of the concurrent application of a conventional mining technology and ISL technology in the Michurin deposit, on level 26–21 m, at the ISL block width of 20 m and shrinkage height of 35 to 50 m has proved the required stability of roof spans, without any falls of oversizes or off-standard sizes to ISL ore blocks. The recommendations for the design approaches to ISL are developed and tested in mined-out stopes in test block 5-86 and in pilot production blocks 5-84-86, 5-88-90 and 1-75-79.

Keywords: drill and blast pattern design justification design, ore treatment by drilling and blasting, in-situ metal leaching, solid ore.
For citation:

Lyashenko V. I., Khomenko O. E., Andreev B. N., Golik V. I. Justification of drill and blast pattern designs for ore treatment before in-situ leaching. MIAB. Mining Inf. Anal. Bull. 2021;(3):58-71. [In Russ]. DOI: 10.25018/0236-1493-2021-3-0-58-71.

Acknowledgements:
Issue number: 3
Year: 2021
Page number: 58-71
ISBN: 0236-1493
UDK: 622.831:550.543
DOI: 10.25018/0236-1493-2021-3-0-58-71
Article receipt date: 06.05.2020
Date of review receipt: 25.06.2020
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

V.I. Lyashenko, Cand. Sci. (Eng.), Senior Researcher, Head of Research Department, SE «UkrNIPIIPromtehnologii», 52204, Zheltye Vody, Ukraine, e-mail: ipt@iptzw.dp.ua, vilyashenko2017@gmail.com,
O.E. Khomenko, Dr. Sci. (Eng.), Professor, National Technical University «Dnipro Polytechnic», 49005, Dnepr, Ukraine, e-mail: rudana.in.ua@gmail.com,
B.N. Andreev, Dr. Sci. (Eng.), Professor, Head of Chear, Krivoi Rog National University, Krivoi Rog, Ukraine, е-mail: andreyevbn@gmail.com,
V.I. Golik, Dr. Sci. (Eng.), Professor, Mining North-Caucasian State Technological University, 362021, Vladikavkaz, Russia, e-mail: v.i.golik@mail.ru.

 

For contacts:

V.I. Lyashenko, e-mail: vilyashenko2017@gmail.com.

Bibliography:

1. Kelly B. Stress analysis for boreholes on department of defense lands in the western united states: a study in stress heterogeneity. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University. Stanford: Stanford University, 2013. Pp. 139—150.

2. Polak C. Uranium exploration (2004-2014): New discoveries, new resources. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. International Symposium on 23—27 June 2014 Vienna, Austria. Vienna, IAEA, 2014. Pp. 8—9, available at: http://www-pub.iaea.org/iaeameetings/46085/ (accessed 19.08.2016).

3. Techno-economic comparison of geological disposal of сarbon dioxide and radioactive waste. Vienna, IAEA, 2014. Pp. 246, available at: http://www.iaea.org/books (accessed 19.08.2016).

4. Reiter K., Heidbach O. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth. 2014. Vol. 5. No 2. Pp. 1123—1149.

5. Safonov O. P., Shkreba O. P. Veroyatnostnyy metod otsenki seysmicheskogo effekta promyshlennykh vzryvov [Probabilistic method for estimating the seismic effect of industrial explosions], Moscow, Nedra, 1970, 56 p.

6. Shashurin S. P., Plaksa N. V., Lebedev A. P. Razrabotka moshchnykh rudnykh mestorozhdeniy sistemami s odnostadiynoy vyemkoy [Development of powerful ore deposits with onestage recessed systems], Moscow, Nedra, 1971, 201 p.

7. Mosinets V. N. Drobyashchee i seysmicheskoe deystvie vzryva v gornykh porodakh [Development of powerful ore deposits with one-stage recessed systems], Moscow, Nedra, 1976, 271 p.

8. Tseytlin Ya. I., Smoliy N. I. Seysmicheskie i udarnye vozdushnye volny promyshlennykh vzryvov [Seismic and shock air waves of industrial explosions], Moscow, Nedra, 1981, 192 p.

9. Bogatskiy V. F., Fridman A. G. Okhrana sooruzheniy i okruzhayushchey sredy ot vrednogo deystviya promyshlennykh vzryvov [Protection of structures and the environment from harmful effects of industrial explosions], Moscow, Nedra, 1982, 162 p.

10. Mosinets V. N., Abramov A. V. Razrushenie treshchinovatykh i narushennykh porod [Destruction of fractured and broken rocks], Moscow, Nedra, 1982, 248 p.

11. Khomenko O., Tsendjav L., Kononenko M., Janchiv B. Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining of Mineral Deposits. 2017. Vol. 11. No 4. Pp. 86—95. DOI: 10.15407/mining11.04.086.

12. Sleptsov M. N., Azimov R. Sh., Mosinets V. N. Podzemnaya razrabotka mestorozhdeniy tsvetnykh i redkikh metallov [Underground mining of nonferrous and rare metals], Moscow, Nedra, 1986, 206 p.

13. Khomenko O., Kononenko M., Danylchenko M. Modeling of bearing massif condition during chamber mining of ore deposits. Mining of Mineral Deposits. 2016. Vol. 10. No 2. Pp. 40—47. DOI: 10.15407/mining10.02.040.

14. Dobycha i pererabotka uranovykh rud v Ukraine. Monografiya. Pod red. A.P. Chernova [Mining and processing of uranium ores. A. P. Chernov (Ed.)], Kiev, ADEF-Ukraina, 2001, 238 p.

15. Zhanchiv B., Rudakov D., Khomenko O., Tsendzhav L. Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2013. No 4. Pp. 10—18.

16. Savel'ev Yu.Yu., Nedel'skiy A. G., Kruk P. T., Dudchenko A. Kh., Tkachenko A. A. Organization of monitoring of the seismic action of an explosion during the exploration of ore deposits under urban development. Part 2. Naukoviy vіsnik NGU. 2004, no 1, pp. 5—7.

17. Kutuzov B. N., Belin V.A. Proektirovanie i organizatsiya vzryvnykh rabot [Design and organization of blasting operations], Moscow, MGGU, 2011, 410 p.

18. Sivenkov V. I., Ilyakhin S. V., Maslov I. Yu. Emul'sionnye vzryvchatye veshchestva i neelektricheskie sistemy initsiirovaniya [Emulsion explosives and non-electrical initiation systems], Moscow, Shchit-M, 2013, 320 p.

19. Trubetskoy K. N. Razvitie resursosberegayushchikh i resursovosproizvodyashchikh geotekhnologiy kompleksnogo osvoeniya mestorozhdeniy poleznykh iskopaemykh [Development of resource-saving and resource-generating geotechnologies of integrated development of mineral deposits], Moscow, IPKON RAN, 2014, 196 p.

20. Jonson D. Controlled shock waves and vibrations during large and intensive blasting operations under Stockholm city. Workshop on Tunneling by Drilling and Blasting Hosted by the 10th Int. Symp. on Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24—25 November, 2012. Pp. 49—58.

21. Monalas F. I., Arusu T. Blasting works in urban area a Singapore case study. Workshop on Tunneling by Drilling and Blasting hosted by the 10th Int. Symp. on Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24—25 November, 2012, Pp. 23—30.

22. Gupta I. D., Trapathy G. R. Comparison of construction and mining blast with specific reference to structural safety. Indian Mining and Engineering Journal. 2013. Vol. 54. No 4. Pp. 13—17.

23. Lyashenko V., Vorob’ev A., Nebohin V., Vorob’ev K. Improving the efficiency of blasting operations in mines with the help of emulsion explosives. Mining of Mineral Deposits. 2018. Vol. 12. No 1. Pp. 95—102. http://creativecommons.org/licenses/by/4.0/.

24. Rakishev B. R., Rakisheva Z. B., Auezova A. M. Velocity and time of expansion of the cylindrical explosive cavity in the rock mass. Vzryvnoe delo. 2014, no 111/68, pp. 3—17. [In Russ].

25. Il'yakhin S. V., Norov A. Yu., Yakshibaev T. M. Determination of the radius of zones of rock mass cracking during camouflage explosion. Vzryvnoe delo. 2016, no 116/73, pp. 29—36. [In Russ].

26. Lyashenko V. I., Golik V. I. Scientific and engineering supervision of uranium production development. Achievements and challenges. MIAB. Mining Inf. Anal. Bull. 2017, no 7, pp. 137–152. [In Russ]. DOI: 10.25018/0236-1493-2017-7-0-137-152.

27. Lyashenko V. I., Golik V. I., Komashchenko V. I. Improvement of efficiency of blasting preparation of rock ores for underground block leaching of metals. Vzryvnoe delo. 2018, no 120/77, pp. 147– 168. [In Russ].

28. Lyashenko V. I., Andreev B. N., Kucha P. M. Technological development of in-situ block leaching of metals from hard ore. MIAB. Mining Inf. Anal. Bull. 2018, no 3, pp. 46—60. [In Russ]. DOI: 10.25018/0236-1493-2018-3-0-46-60.

29. Lyashenko V. I., Andreev B. N. Improvement of the efficiency of drilling and blasting preparation of ore mass for the underground block leaching. Occupational Safety in Industry. 2019, no 8, pp. 27—34. [In Russ]. DOI: 10.24000/0409-2961-2019-8-27-34.

30. Borovkov Yu.A., Yakshibaev T. M. Theoretical studies of changes in fracture zones radius in the ore pile of heap leaching with camouflet blasthole charge explosion. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2019, no 5, pp. 30—36. [In Russ]. DOI: 10.21440/05361028-2019-5-30-36.

31. Lyashenko V. I., Khomenko O. E. Enhancement of confined blasting of ore. MIAB. Mining Inf. Anal. Bull. 2019, no 11, pp. 59–72. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-59-72.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.