Substantiation of rheological model parameters for salt rock mass

Advancement of the mining industry and the expansion of mining necessarily leads to the involvement of new deep-seated deposits into operation. Russia holds potash deposits оf Upper Kama, Nivenskoe and Gremyachensky in the Perm Krai and in the Kaliningrad and Volgograd areas, respectively. The major difficulty associated with potash mining is the susceptibility of salt rocks to large deformations within the whole life of a deposit. This calls for the reliable prediction of displacements of boundaries in underground excavations having the same life cycle as the mine does, i.e. 50 years and longer. The complicating factor in this respect is the lack of the field observations over boundary displacements in tunnels driven in salt rocks. For this reason, it is necessary to predict the boundary displacements in underground excavations over the whole period of operation of a mine. The prediction reliability directly depends on the problem formulation and on the models of the mechanical behavior of test rock mass. This article proposes a procedure to determine correct rheological parameters for the salt rock deformation models to obtain the qualitative and quantitative values of perimeter displacements. The studies used a phenomenological model implemented in Abaqus CAE environment and the Double Power Law.

 

Keywords: salt rock mass, rheology, creep, finite element method, numerical model, support system, support load prediction, support stress–strain prediction, power law model.
For citation:

Protosenya A. G., Katerov A. M. Substantiation of rheological model parameters for salt rock mass. MIAB. Mining Inf. Anal. Bull. 2023;(3):16-28. [In Russ]. DOI: 10.25018/ 0236_1493_2023_3_0_16.

Acknowledgements:
Issue number: 3
Year: 2023
Page number: 16-28
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236_1493_2023_3_0_16
Article receipt date: 09.11.2022
Date of review receipt: 28.01.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

A.G. Protosenya1, Dr. Sci. (Eng.), Professor, e-mail: Protosenya_AG@pers.spmi.ru, ORCID ID: 0000-0001-7829-6743,
A.M. Katerov1, Graduate Student, e-mail: andrey.katerov292@gmail.com, ORCID ID: 0000-0002-8566-4724,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.M. Katerov, e-mail: andrey.katerov292@gmail.com.

Bibliography:

1. Kazikaev D. M., Sergeev S. V. Diagnostika i monitoring napryazhennogo sostoyaniya krepi vertikal'nykh stvolov [Diagnosis and monitoring of stress state of vertical shaft supports], Moscow, Izd-vo «Gornaya kniga», 2011, 244 p.

2. Kirienko Yu. A. Justification of support design for tunnel and shaft intersections in salt. MIAB. Mining Inf. Anal. Bull. 2022, no. 6, pp. 20—34. [In Russ]. DOI: 10.25018/0236_1493_ 2022_6_0_20.

3. Kirienko Yu. A. Support system design for shaft junctions in creeping rocks. MIAB. Mining Inf. Anal. Bull. 2021, no. 8, pp. 142—153. [In Russ]. DOI: 10.25018/0236_1493_2021_8_ 0_142.

4. Aptukov V. N., Vaulina I. B. Podderzhanie gornykh vyrabotok v porodakh solenosnoy tolshchi: Teoriya i praktika [Maintaining rock outcrops in saltmarsh rocks: Theory and practice], Novosibirsk, Nauka, 2017, 264 p.

5. Kachurin N. M., Afanasiev I. A., Pestrikova V. S., Stas P. P. Monitoring of stability of vertical shafts of potash mines. News of the Tula state university. Sciences of Earth. 2020, no. 3, pp. 304—317. [In Russ].

6. Pankov I. L., Morozov I. A. Salt rock deformation under bulk multiple-stage loading. Journal of Mining Institute. 2019, vol. 239, pp. 510—519. [In Russ]. DOI: 10.31897/pmi.2019. 5.510.

7. Kozlovskiy E. Ya., Zhuravkov M. A. Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow. Journal of Mining Institute. 2021, vol. 247, pp. 33—38. [In Russ]. DOI: 10.31897/PMI.2021.1.4.

8. Zhou H. W., Wang C. P., Mishnaevsky L., Duan Z. Q., Ding J. Y. A fractional derivative approach to full creep regions in salt rock. Mechanics of Time-Dependent Materials. 2013, vol. 17, pp. 413—425. DOI: 10.1007/s11043-012-9193-x.

9. Lin-jian Ma, Xin-yu Liu, Qin Fang, Hong-fa Xu, Hui-min Xia, Er-bing Li, Shi-gang Yang, Wen-pei Li A new elasto-viscoplastic damage model combined with the generalized hoek— Brown failure criterion for bedded rock salt and its application. Rock Mechanics and Rock Engineering. 2013, vol. 46, pp. 53—66. DOI: 10.1007/s00603-012-0256-8.

10. Wu F., Chen J., Zou Q. A nonlinear creep damage model for salt rock. International Journal of Damage Mechanics. 2019, vol. 28, no. 5, pp. 758—771. DOI: 10.1177/1056789518792649.

11. Heusermann S., Rolfs O., Schmidt U. Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Computers & Structures. 2003, vol. 81, no. 8-11, pp. 629—638. DOI: 10.1016/S0045-7949(02)00415-7.

12. Shao J. F., Zhu Q. Z., Su K. Modeling of creep in rock materials in terms of material degradation. Computers and Geotechnics. 2003, vol. 30, no. 7, pp. 549—555. DOI: 10.1016/ S0266-352X(03)00063-6.

13. Böttcher N., Görke U. J., Kolditz O., Nagel T. Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environmental Earth Sciences. 2017, vol. 76, no. 98. DOI: 10.1007/s12665-017-6414-2.

14. Weatherby J. R., Munson D. E., Argüello J. G. Three-dimensional finite element simulation of creep deformation in rock salt. Engineering Computations. 1996, vol. 13, no. 8, pp. 82—105.

15. Munson D. E. Constitutive model of creep in rock salt applied to underground room closure. International Journal of Rock Mechanics and Mining Sciences. 1997, vol. 34, no. 2, pp. 233—247.

16. Dawson P. R., Munson D. E. Numerical simulation of creep deformations around a room in a deep potash mine. International Journal of Rock Mechanics and Mining Sciences & Geomechanics. 1983, vol. 20, no. 1, pp. 33—42.

17. Reedlunn B., Guadalupe Argüello J., Hansen F. D. A reinvestigation into Munson’s model for room closure in bedded rock salt. International Journal of Rock Mechanics and Mining Sciences. 2022, vol. 151, article 105007. DOI: 10.1016/j.ijrmms.2021.105007.

18. Chan K. S., Bodner S. R., Munson D. E. Recovery and healing of damage in WIPP salt. International Journal of Damage Mechanics. 1998, vol. 7, no. 2, pp. 143—166.

19. Munson D. E., Fossum A. F., Senseny P. E. Approach to first principles model prediction of measured WIPP (Waste isolation pilot plant) in-situ room closure in salt. Tunnelling and Underground Space Technology. 1990, vol. 5, no. 1-2, pp. 135—139.

20. Munson D. E., Weatherby J. R., Devries K. L. Twoand three-dimensional calculations of scaled in situ tests using the M-D model of salt creep. International Journal of Rock Mechanics and Mining Sciences & Geomechanics. 1993, vol. 30, no. 7, pp. 1345—1350.

21. Konstantinova S. A., Aptukov V. N. Nekotorye zadachi mekhaniki deformirovaniya i razrusheniya solyanykh porod [Some problems of deformation and fracture mechanics of salt rocks], Novosibirsk, Nauka, 2013, 191 p.

22. Kashnikov Yu. A., Ermashov A. O., Efimov A. A. Geological and geomechanical model of the Verkhnekamsk potash deposit site. Journal of Mining Institute. 2019, vol. 237, pp. 259—267. [In Russ]. DOI: 10.31897/pmi.2019.3.259.

23. Baryakh A. A., Samodelkina N. A. Geomechanical evaluation of intensity of deformation processes over flooded potash mine. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no. 4, pp. 33—46. [In Russ].

24. Morozov I. A., Pankov I. L., Toksarov V. N. Stability of underground openings in salt rock masses. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 36—47. [In Russ]. DOI: 10.25018/ 0236_1493_2021_9_0_36.

25. Belyakov N. A., Belikov A. A. Prediction of the integrity of the water-protective stratum at the Verkhnekamskoye potash ore deposit. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 33—46. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_33.

26. Cirone A., Vargas E. Athermodynamic modeling of creep in rock salt. International Journal of Rock Mechanics and Mining Sciences. 2023, vol. 162. DOI: 10.1016/j.ijrmms.2022.105298.

27. Van Sambeek L. L., Ratigan J. L., Hansen F. D. Dilatancy of rock salt in laboratory tests. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1993, vol. 30, no. 7, pp. 735—738.

28. Van Sambeek L. L. Creep of rock salt under inhomogeneous stress conditions. Abstract of Ph.D. Dissertation. Colorado, 1986, 325 p.

29. Karasev M. A., Buslova M. A., Villner M. A., Nguyen T. T. Methodology for predicting the stress and strain state of vertical shaft support at the interface with horizontal workings in salt. Journal of Mining Institute. 2019, vol. 240, pp. 628—637. [In Russ]. DOI: 10.31897/ pmi.2019.6.628.

30. Gunther R., Salzer K., Popp T., Ludeling C. Steady-state creep of rock salt: Improved approaches for lab determination and modeling. Rock Mechanics and Rock Engineering. 2015, vol. 48, pp. 2603—2613. DOI: 10.1007/s00603-015-0839-2.

31. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko-geološko-naftni zbornik. 2022, vol. 37, no. 1, pp. 151—162. DOI: 10.17794/rgn.2022.1.13.

32. Tashchi V. M. Hydrogeological conditions of Solotva rock salt deposit and some recommendations on the issue of its further exploitation. Trudy VNIISol'. 1970, no. 10(18), pp. 21—34. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.