Rational technology and application domain of hydraulic backhoes in open pit mines

Introduction of productive machines and robotics drastically changes the standards and technology of mining control. This is especially valid for mineral mining in hard rock masses with substantial variability of structure and strength. Application of most known methodologies for the assessment and optimization of operation conditions of truck-and-shovel systems is limited because of high subjectivity of initial data involved in managerial decision-making. This governs the need to ensure provisions to maintain rhythmicity of rock handling within an excavation work cycle. One of the methods to employ available production reserves is an open-cycle truck-and-shovel system with real-time re-distribution of tucks between shovels. However, the absence of methodologies for the objective instrumental monitoring of changes in geotechnical conditions and in rock handling rhythmicity within an excavation work cycle disables universal and efficient application of this technology. The common introduction of more mobile hydraulic backhoes into operation has both merits and drawbacks, and, therefore, requires a technical approach-based justification of rational application domain for the machines. A more complex structure of an excavation process cycle with a more complicated operation algorithm needs unification of a control technology with wider use of intelligent software and hardware. For mobile hydraulic backhoes, the article proposes a new approach to optimization of rock handling within excavation process cycles. This approach includes special intelligent systems of monitoring and control.

Keywords: excavation monitoring, open-cycle truck-and-shovel operation, backhoe, rock loading rhythmicity, excavation process cycle, dynamic zoning of neighbor face areas, intelligent software and hardware.
For citation:

Khakulov V. A., Shapovalov V. A., Ignatov V. N., Nogerov I. A., Ignatov M. V. Rational technology and application domain of hydraulic backhoes in open pit mines. MIAB. Mining Inf. Anal. Bull. 2023;(8):112-127. [In Russ]. DOI: 10.25018/0236_1493_2023_8_0_112.

Issue number: 8
Year: 2023
Page number: 112-127
ISBN: 0236-1493
UDK: 622.271.4
DOI: 10.25018/0236_1493_2023_8_0_112
Article receipt date: 11.04.2023
Date of review receipt: 02.05.2023
Date of the editorial board′s decision on the article′s publishing: 10.07.2023
About authors:

V.A. Khakulov1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: vkh21@yandex.ru,
V.A. Shapovalov1, Dr. Sci. (Phys. Mathem.), e-mail: vet555_83@mail.ru,
V.N. Ignatov, Dr. Sci. (Eng.), Professor, e-mail: VNIgnatov@yandex.ru, M.I. Platov South-Russian State Polytechnic University, 346428, Novocherkassk, Russia,
I.A. Nogerov1, Senior Lecturer, e-mail: nogerov.ibragim@mail.ru,
M.V. Ignatov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Ign_m@mail.ru,
1 H.M. Berbekov Kabardino-Balkarian State University, 360004, Nalchik, Russia.


For contacts:

V.A. Khakulov, e-mail: vkh21@yandex.ru.


1. Burakov A. M., Panishev S. V., Alkova E. L., Khosoev D. V. Experience of hydraulic excavators application in complex mining and geological and climatic conditions.Russian Mining Industry Journal. 2022, no. 2, pp. 90—96. [In Russ]. DOI: 10.30686/1609-9192-2022-90-96.

2. Poderney R. Yu. World market for the supply of modern excavation and loading equipment for open-pit mining operations. MIAB. Mining Inf. Anal. Bull. 2015, no. 2, pp. 148—167. [In Russ].

3. Merzlyakov V. G., Slesarev B. V., Steinzeig V. M. Experience of application of Komatsu Mining Germany hydraulic excavators at the enterprises of Russia. Mining equipment and electromechanics. 2013, no. 5, pp. 15—20. [In Russ].

4. Kashirskikh V. G., Medvedev A. E. Principles of automated control of a single-bucket open-pit excavator and functional diagnostics of its electric drives on the basis of computer technologies. Bulletin of the Kuzbass State Technical University. 2005, no. 1, pp. 75—80. [In Russ].

5. Zhuravlev A. G. Issues of optimizing the parameters of transport systems of quarries. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 583—601. [In Russ]. DOI: 10.25018/02361493-2020-31-0-583-601.

6. Makarov V. N., Anistratov K. Yu. Achievement of the highest record monthly productivity of excavators EKG-18 at the sections of JSC «Stroyservis». Ugol'. 2019, no. 1, pp. 20—26. [In Russ]. DOI: 10.18796/0041-5790-2019-1-20-26.

7. Anistratov K. Y. Economic and mathematical model of integrated mechanization of mining works in open pits. Russian Mining Industry Journal. 2015, no. 3 (121), pp. 54. [In Russ].

8. Deryabin S. A., Rzazade Ulvi Azar ogly, Kondratev E. I., Temkin I. O. Metamodel of autonomous control architecture for transport process flows in open pit mines. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 117—129. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_117.

9. Khakulov V. A., Shapovalov V. A., Ignatov M. V. Improvement of drilling and blasting technology at open-pit mining. MIAB. Mining Inf. Anal. Bull. 2019, no. S29, pp. 34—49. [In Russ].

10. Klebanov A. F. Automation and robotization of open-pit mining: the experience of digital transformation. Russian Mining Industry Journal. 2020, no. 1, pp. 8—11. [In Russ].

11. Kuznetsov I. S., Zinoviev V. V., Nikolaev P. I., Starodubov A. N. Computer simulation system for optimizing the parameters of excavator-automotive complexes. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 304—316. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_304.

12. Maharatkin P. N., Abdulaev E. K., Vishnyakov G. Yu., Botyan E. Yu., Pushkarev A. E. Increasing the efficiency of operation of dump trucks on the basis of justification of their rational speed with simulation simulation. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

13. Khazin M. L. Robotized dump trucks. Izvestiya of the Ural state mining university. 2020, no. 3(59), pp. 123—130. [In Russ]. DOI: 10.21440/2307-2091-2020-3-123—130.

14. Khakulov V. A., Shapovalov V. A., Ignatov V. N., Ignatov M. V. Improvement of management of mining complexes when operating excavators with dumper trucks in the open cycle. MIAB. Mining Inf. Anal. Bull. 2020, no. S31, pp. 57—72. [In Russ]. DOI: 10.25018/0236-14932020-10-31-57-72.

15. Khakulov V. A., Shapovalov V. A., Ignatov M. V., Karpova Z. V. Automated system for forming the quality of ores at the stage of mining operations for the conditions of flotation enrichment with hydrometallurgical debugging. Proceedings of 2018 International Conference «Quality Management, Transport and Information Security, Information Technologies». Saint Petersburg, 2018, pp. 330—336.

16. Sekisov G. V., Cheban A. Yu., Sobolev A. A., Yakimov A. A. Grading system for integrated assessment of mining technologies. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 187—198. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-187-198.

17. Khakulov V. A. Technology of step-by-step improvement of drilling and blasting operations. MIAB. Mining Inf. Anal. Bull. 2007, no. 2, pp. 77—78. [In Russ].

18. Kuznetsov D., Kosolapov A. Dynamic of performance of open-pit dump trucks in ore mining in severe climatic environment. Transportation Research Procedia. 2022, vol. 63, no. 3, pp. 1042—1048. DOI: 10.1016/j.trpro.2022.06.104.

19. Phoon K. K., Zhang W. Future of machine learning in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2022, vol. 17, no. 10, pp. 1—16. DOI: 10.1080/17499518.2022.2087884.

20. Zhang W., Gu X., Hong L., Han L., Wang L. Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges. Applied Soft Computing. 2023, vol. 136, no. 4, article 110066. DOI: 10.1016/j.asoc.2023.110066.

21. Potapov V. P., Oparin V. N., Mikov L. S., Popov S. E. Information technologies in problems of nonlinear geomechanics. Part II: New methods, metadata models, geodata bases and base layers of electronic charts for a typical geoportal of mining regions in Siberia. Journal of Mining Science. 2022, vol. 58, no. 4, pp. 635—651.

22. Zhao J. S., Chen B. R., Jiang Q., Lu J. F., Hao X. J., Pei S. F., Wang F. Microseismic monitoring of rock mass fracture response to blasting excavation of large underground caverns under high geostress. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 6, pp. 1—18. DOI: 10.1007/s00603-021-02709-3.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.