Substantiation of rational parameters of mine support system for underground roadways in difficult geological conditions

An integral part of underground mineral mining is construction of a system of large cross-section underground openings. In particular, the construction of batching-and-crushing rooms requires determining rational parameters of mine support systems to ensure stability of the underground openings for the whole service life of a mine. This article presents the substantiation of the mine support system parameters for underground openings for a batchingand-crushing system at Veduga gold deposit. The geomechanical model of the deposit is build, and the numerical modeling of change in the stress–strain behavior of rock mass at junctions of underground openings is performed using the finite element method. The modeling in Simulia Abaqus CAE uses the stability criteria for the exposed rock surfaces. In terms of Veduga deposit, two stability criteria are compared: the stress intensity criterion and the Q-index. Depending on the calculated category of stability, the rational parameters of mine support systems for a set of underground openings are selected and substantiated. The mine support system for the operational phase of the batching-and-crushing facility is selected. The chosen approaches to the stability estimation of underground openings are compared, and it is proposed to continue the research in the line of the analysis of influence exerted by the spatial arrangement of underground openings on their stability.

Keywords: exposed rock surface stability, classification, criterion, geomechanical model, 3D problem, stress–strain behavior, system of underground openings, large cross-section, numerical analysis, mine support system parameters.
For citation:

Trushko V. L., Baeva E. K. Substantiation of rational parameters of mine support system for underground roadways in difficult geological conditions. MIAB. Mining Inf. Anal. Bull. 2023;(12):55-69. [In Russ]. DOI: 10.25018/0236_1493_2023_12_0_55.

Acknowledgements:
Issue number: 12
Year: 2023
Page number: 55-69
ISBN: 0236-1493
UDK: 622.268.8
DOI: 10.25018/0236_1493_2023_12_0_55
Article receipt date: 07.03.2023
Date of review receipt: 06.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

V.L. Trushko1, Dr. Sci. (Eng.), Professor, e-mail: Trushko_VL@pers.spmi.ru, ORCID ID: 0000-0002-9742-1076,
E.K. Baeva1, Graduate Student, e-mail: loka2708@rambler.ru, ORCID ID: 0000-0003-4213-6849,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

E.K. Baeva, e-mail: loka2708@rambler.ru.

Bibliography:

1. Maus V., Giljum S., da Silva D. M., Gutschlhofer J., da Rosa R. P., Luckeneder S. L. B., Gass S., Lieber M., McCallum I. An update on global mining land use. Scientific Data. 2022, vol. 9, no. 1, pp. 1—11. DOI: 10.1038/s41597-022-01547-4.

2. Silyanov S. A., Sazonov A. M., Naumov E. A., Lobastov B. M., Zvyagina Y. A., Artemyev D. A., Nekrasova N. A., Pirajno F. Mineral Paragenesis, formation stages and trace elements in sulfides of the Olympiada gold deposit (Yenisei Ridge, Russia). Ore Geology Reviews. 2022, vol. 143, article 104750. DOI: 10.1016/j.oregeorev.2022.104750.

3. Zhang H., Liu J. C., Xu Q., Wang J. Y. Geochronology, isotopic chemistry, and gold mineralization of the black slate-hosted Haoyaoerhudong gold deposit, northern North China Craton. Ore Geology Reviews. 2020, vol. 117, article 103315. DOI: 10.1111/rge.12302.

4. Li X., Li Q., Hu Y., Teng L., Yang S. Evolution characteristics of mining fissures in overlying strata of stope after converting from open-pit to underground. Arabian Journal of Geosciences. 2021, vol. 14, pp. 1—18. DOI: 10.1007/s12517-021-08978-0.

5. Afum B. O., Ben-Awuah E. A review of models and algorithms for surface-underground mining options and transitions optimization: some lessons learnt and the way forward. Mining. 2021, vol. 1, no. 1, pp. 112—134. DOI: 10.3390/mining1010008.

6. King B., Goycoolea M., Newman A. Optimizing the open pit-to-underground mining transition. European Journal of Operational Research. 2017, vol. 257, no. 1, pp. 297—309. DOI: 10.1016/j.ejor.2016.07.021.

7. Whittle D., Brazil M., Grossman P. A., Rubinstein J. H., Thomas D. A. Combined optimisation of an open-pit mine outline and the transition depth to underground mining. European Journal of Operational Research. 2018, vol. 268, no. 2, pp. 624—634. DOI: 10.1016/j.ejor.2018.02.005.

8. Abrosimova N. A., Bortnikova S. B., Edelev A. V. Forms of finding potentially toxic elements in dump rocks of the Veduginsky gold deposit. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2013, no. 5, pp. 35—42. [In Russ].

9. Shaposhnik Yu. N., Neverov S. A., Neverov A. A., Konurin A. I. Rating evaluation of the rock mass of the Veduginsky deposit. Fundamental'nye i prikladnye voprosy gornyh nauk. Mining sciences: fundamental and applied issues. 2020, vol. 7, no. 1, pp. 202—208. [In Russ]. DOI: 10. 15372/FPVGN2020070131.

10. Zang C., Chen M., Zhang G., Wang K., Gu D. Research on the failure process and stability control technology in a deep roadway: numerical simulation and field test. Energy Science & Engineering. 2020, vol. 8, no. 7, pp. 2297—2310. DOI: 10.1002/ese3.664.

11. Protosenya A. G., Lebedev M. O., Karasev M. A., Belyakov N. A. Geomechanics of low-subsidence construction during the development of underground space in large cities and megalopolises. International Journal of Mechanical and Production Engineering Research and Development. 2019, vol. 9, no. 5, pp. 1005—1014. DOI: 10.24247/ijmperdoct201989.

12. Sepehri M., Apel D. B., Adeeb S., Leveille P., Hall R. A. Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Engineering Geology. 2020, vol. 266, article 105457. DOI: 10.1016/j. enggeo.2019.105457.

13. Zhang F., Damjanac B., Maxwell S. Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling. Rock Mechanics and Rock Engineering. 2019, vol. 52, no. 12, pp. 5137—5160. DOI: 10.1007/s00603-019-01851-3.

14. Nguyen T. T., Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behaviour. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering. 2021, vol. 174, no. 4, pp. 355—371. DOI: 10.1680/jgeen.20.00057.

15. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022, vol. 253, pp. 41—48. [In Russ]. DOI: 10.31897/PMI.2022.1.

16. Kirienko Y. A. Support system design for shaft junctions in creeping rocks. MIAB. Mining Inf. Anal. Bull. 2021, no. 8, pp. 142—153. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_142.

17. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.

18. Protosenja A. G., Katerov A. M. Development of stress and strain state of combined support for a vertical shaft driven in salt massif. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 100—113. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_100.

19. Demenkov P. A., Goldobina L. A., Trushko O. V. Geotechnical barrier options with changed geometric parameters. GEOMATE Journal. 2020, vol. 19, no. 75, pp. 58—65. DOI: 10.21660/2020.75.78558.

20. Shammazov I. A., Batyrov A. M., Sidorkin D. I., Van Nguyen T. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Applied Sciences. 2023, vol. 13, article 3139. DOI: 10.3390/app13053139.

21. Volokhov E. M., Mukminova D. Z. Deformations assessment during subway escalator tunnels construction by the method of artificial freezing of soil for the stage of ice wall formation. Journal of Mining Institute. 2021, vol. 252, pp. 826—839. [In Russ]. DOI:10.31897/ PMI.2021.6.5.

22. Belyakov N. A., Belikov A. A. Prediction of the integrity of the water-protective stratum at the Verkhnekamskoye potash ore deposit. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 33—46. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_33.

23. Hoek E., Brown E. T. The Hoek-Brown failure criterion — a 1988 update. Proceedings of the 15th Canadian Rock Mechanics Symposium. Civil Engineering Department, University of Toronto, Toronto. 1988, pp. 31—38.

24. Potemkin D. A., Popov M. G., Trushko O. V. Examination and analysis of actual stability of mine workings at the Yakovlevsky iron ore deposit. ARPN Journal of Engineering and Applied Sciences. 2018, vol. 13, no. 7, pp. 2490—2499.

25. Karasev M. A., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko-Geološko-Naftni Zbornik. 2022, vol. 37, no. 1, pp. 151—162. DOI: 10.17794/rgn.2022.1.13.

26. Ignatyev S. A., Sudarikov A. E., Imashev A. Z. Modern mathematical forecast methods of maintenance and support conditions for mining tunnel. Journal of Mining Institute. 2019, vol. 238, pp. 371—375. [In Russ]. DOI: 10.31897/PMI.2019.4.371.

27. Zhang Q., Huang X., Zhu H., Li J. Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI). Tunnelling and Underground Space Technology. 2019, vol. 83, pp. 73—81. DOI: 10.1016/j.tust.2018.09.015.

28. Bushkov V. K., Shemetov R. S. Stability estimation and justification of support systems in transition to underground mining in the Olimpiada deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 40—54. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0-40-54.

29. Barton N., Lien R., Lunde K. Engineering classification of rock masses for the design of rock support. Rock Mechanics. 1974, vol. 6, pp. 189—236. DOI: 10.1007/BF01239496.

30. Barton N. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering. 2013, vol. 5, no. 4, pp. 249—261. DOI: 10.1016/j.jrmge.2013.05.008.

31. Rehman H., Naji A. M., Kim J. J., Yoo H. Extension of tunneling quality index and rock mass rating systems for tunnel support design through back calculations in highly stressed jointed rock mass: An empirical approach based on tunneling data from Himalaya. Tunnelling and Underground Space Technology. 2019, vol. 85, pp. 29—42. DOI: 10.1016/j.tust.2018.11.050.

32. Trushko V. L., Protosenya A. G., Ochkurov V. I. Prediction of the geomechanically safe parameters of the stopes during the rich iron ores development under the complex mining and geological conditions. International Journal of Applied and Fundamental Research. 2016, no. 11(22), pp. 11095—11103. [In Russ].

33. Barton N. Some new Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences. 2002, vol. 39, no. 2, pp. 185—216. DOI: 10.1016/S1365-1609(02)00011-4.

34. Gosudarstvennyy doklad «O sostoyanii i ispol'zovanii mineral'no-syr'evykh resursov Rossiyskoy Federatsii v 2020 godu», available at: http://www.mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_i_ispolzovanii_mineralno_syrevykh_resurs (accessed 12.07.2022).

35. Bieniawski Z. T. Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons, 1989, 272 p.

36. Trushko V. L., Ogorodnikov Yu. N., Mikulin E. I., Shirokov A. V., Lokhnev A. S. Instruktsiya po vyboru krepi dlya podgotovitel'nykh i gorno-kapital'nykh vyrabotok shakht OAO «Sevuralboksitruda» [Instructions for the selection of supports for preparatory and mining-capital workings of the mines of JSC «Sevuralboxitruda»], Severoural'sk, 2010, 55 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.