Defining the structure of a mechanised complex for extracting coal pillars

Under the currently used technologies of underground mining of coal resources within the mine fields, depending on mining, geological and technological conditions, pillars of various shapes and sizes can be formed. It is not technically and economically advisable to excavate such pillars with currently available technologies and technical facilities, powerful expensive complexes designed for use in longwall mines. It is also impracticable to create specific technologies and specialized technical means for each individual technology among their multitude. Excessive accumulation of unrecoverable reserves in pillars actualises the problem of development of unified special technologies and technical facilities for further pillar mining suitable and safe for extraction. The authors have analysed the existing technologies and technical facilities for pillar extraction, formed the requirements to unified technologies and technical facilities and proposed, based on coordination of the main face (longwall face) and pillar movement speeds, the technology of their extraction by the corresponding mining mechanised complexes. Based on the proposed technology, the authors presented one of the potential variants of the structure of a unified mechanised module complex for pillar excavation.

Keywords: coal, mine field, excavation area, pillar, structure of mechanised complex, extraction technology, technical facilities, excavation modules.
For citation:

Gabov V. V., Garashchenko Zh. M. Defining the structure of a mechanised complex for extracting coal pillars. MIAB. Mining Inf. Anal. Bull. 2023;(11-1):38-50. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_38.

Issue number: 11
Year: 2023
Page number: 38-50
ISBN: 0236-1493
UDK: 622.232.8
DOI: 10.25018/0236_1493_2023_111_0_38
Article receipt date: 06.07.2023
Date of review receipt: 13.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

V.V. Gabov1, Dr. Sci. (Eng.), Professor, Professor, e-mail:, ORCID ID: 0000-0002-6587-2446,
Zh.M. Garashchenko1, Graduate Student, e-mail:, 
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

Zh.M. Garashchenko, e-mail:


1. Kazanin O., Sidorenko A., Drebensted C. Intensive underground mining technologies: Challenges and prospects for the coal mines in Russia. Acta Montanistica Slovaca. 2021, vol. 26, no. 1, pp. 60—69. DOI: 10.46544/AMS.v26i1.05.

2. Sheveleva O. B., Slesarenko E. V. Sustainable development of a coal-mining region: technological and ecological aspects. Russian Journal of Economics and Law. 2019, vol. 13, no. 4, pp. 1537—1548. [In Russ]. DOI: 10.21202/1993-047X.13.2019.4.1537-1548.

3. Plakitkina L. S., Plakitkin Yu. A., Dyachenko K. I. World trends of coal industry development. Russian Mining Industry Journal. 2019, vol. 143, no. 1, pp. 24—29. [In Russ]. DOI: 10.30686/1609-9192-2019-1-143-24-29.

4. Hirschi J. C. The role of research in the coal-mining industry: Moving forward using lessons from the past. Advances in Productive, Safe, and Responsible Coal Mining. 2019, pp. 303—312. DOI: 10.1016/B978-0-08-101288-8.00014-6.

5. Kazanin O., Sidorenko A., Sidorenko S., Ivanov V., Mischo H. High productive longwall mining of multiple gassy seams: best practice and recommendations. Acta Montanistica Slovaca. 2022, vol. 27, no. 1, pp. 152—162. DOI: 10.46544/AMS.v27i1.11.

6. Zubov V. P., Phuc L. Q. Development of resource-saving technology for excavation of flatlying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines). Journal of Mining Institute. 2022, vol. 257, pp. 795—806. [In Russ]. DOI: 10.31897/PMI.2022.72.

7. Valiev N. G., Berkovich V. Kh., Propp V. D., Kokarev K. V. Problems of developing protection pillars under the exploitation of ore deposits. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2018, no. 2, pp. 4—9. [In Russ]. DOI: 10.21440/0536-1028-2018-2-4-9.

8. Kiziyarov O. L., Bolotov A. P., Smagina I. A. Estimation of the level of coal losses in the protective pillars under the technological scheme of excavation with the reversal of complexmechanized cleaning face. Innovative Scientific Research. 2020, no. 12-1(2), pp. 80—91. [In Russ].

9. Zubov V. P. Status and directions of improvement of development systems of coal seams on perspective Kuzbass coal mines. Journal of Mining Institute. 2017, vol. 225, pp. 292—297. [In Russ]. DOI: 10.18454/PMI.2017.3.292.

10. Lesnykh A. S., Moiseev A. K. Selection and justification of effective and safe technology of mining of interstrip pillars. Nauka i molodezh': problemy, poiski, resheniya: trudy Vserossiyskoy nauchnoy konferentsii studentov, aspirantov i molodykh uchenykh [Science and Youth: problems, searches, solutions: proceedings of the All-Russian Scientific Conference of Students, Postgraduates and Young Scientists], Novokuznetsk, SibGIU, 2022, pp. 119—122. [In Russ].

11. Razumov E. A., Venger V. G., Zelyaeva E A., Pudov E. Yu., Kalinin S. I. Experience in mechanized mining of thick gently sloping seams in Kuzbass coal mines and recommendations for mining very thick gently sloping seams. Ugol'. 2021, no. 6, pp. 4—10. [In Russ]. DOI: 10.18796/0041-5790-2021-7-4-8.

12. Kobylkin S. S., Kharisov A. R. Design features of coal mines ventilation using a roomand-pillar development system. Journal of Mining Institute. 2020, vol. 245, pp. 531—538. [In Russ]. DOI: 10.31897/PMI.2020.5.4.

13. Nikiforov A. V., Vinogradov E. A., Kochneva A. A. Analysis of multiple seam stability. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1132—1139, available at

14. Mark C., Agioutantis Z. Analysis of coal pillar stability (ACPS). A new generation of pillar design software. International Journal of Mining Science and Technology. 2019, vol. 29, no. 1, pp. 87—91. DOI: 10.1016/j.ijmst.2018.11.007.

15. Izabek T. K., Saparov K. A., Akatiev A. V., Baizbayev M. M. Technological schemes for mining coal pillars on the basis of a chamber development system. Sovremennye tendentsii i innovatsii v nauke i proizvodstve. Materialy KH Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Modern trends and innovations in science and production. Materials of the X International Scientific and Practical Conference], Mezhdurechensk, KuzGTU, 2021. [In Russ].

16. Wen-Da Wu, Jian-Biao Bai, Xiang-Yu Wang, Shuai Yan, Shao-Xu Wu Numerical study of failure mechanisms and control techniques for a gob-side yield pillar in the sijiazhuang coal mine, China. Rock Mechanics and Rock Engineering. 2019, vol. 52, no. 4, pp. 1231—1245. DOI: 10.1007/s00603-018-1654-3.

17. Garashchenko Zh. M., Gabov V. V., Pryalukhin A. F. Technology, methods and technical means of extracting coal pillars. Transport, mining and construction engineering: science and production. 2022, vol. 15, pp. 151—156. [In Russ]. DOI: 10.26160/2658-3305-2022-15-151-156.

18. Fedorov E. V., Shenin D. S. Experimental evaluation data on gas content of working coal seams in Kirov Mine. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 51—58. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-51-58.

19. Kornev A. V., Spitsyn A. A., Korshunov G. I., Bazhenova V. A. Preventing dust explosions in coal mines: Methods and current trends. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 133—149. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_133.

20. Senkus V. V., Senkus Val. V. Selecting mining scenario for the Makarievsky coal site. Naukoemkie tekhnologii razrabotki i ispol'zovaniya mineral'nykh resursov. 2020, no. 6, pp. 104—111. [In Russ].

21. Kazanin O. I., Meshkov A. A., Sidorenko A. A. Prospects for development of a technological structure of underground coal mines. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 35—53. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_35.

22. Kazanin O. I., Yaroshenko V. V. Decrease in coal losses during mining of contiguous seams in the near-bottom part at Vorkuta deposit. Journal of Mining Institute. 2020, vol. 244, pp. 395—401. [In Russ]. DOI: 10.31897/PMI.2020.4.1.

23. Heritage Y. Mechanics of rib deformation — observations and monitoring in Australian coal mines. International Journal of Mining Science and Technology. 2019, vol. 29, no. 1, pp. 119—129. DOI: 10.1016/j.ijmst.2018.11.017.

24. Kuznetsova L. V., Anfyorov B. A. Selective extraction of minerals: experience, systematization and prospects of application at complex development of coal deposits. Bulletin of the Kuzbass State Technical University. 2018, vol. 18, no. 1, pp. 75—83. [In Russ]. DOI: 10.26730/19994125-2018-1-75-83.

25. Kazanin O. I., Sidorenko А. А., Meshkov А. А. Organizational and technological principles of realization of the modern high productive longwall equipment capacity. Ugol'. 2019, no. 12, pp. 4—13. [In Russ]. DOI: 10.18796/0041-5790-2019-12-4-13.

26. Szurgacz D., Brodny J. Adapting the powered roof support to diverse mining and geological conditions. Energies. 2020, vol. 13, no 2, article 405. DOI: 10.3390/en13020405

27. Rudzki P., Krot P. Dynamics control of powered hydraulic roof supports in the underground longwall mining complex. IOP Conference Series: Earth and Environmental Science. 2021, vol. 942, no. 1, article 12014. DOI: 10.1088/1755-1315/942/1/012014.

28. Khosoev D. V. Technical and economic comparison of options for the development of complex structural formations of the Elga field. News of the Ural State Mining University. 2023, no. (69), pp. 139—147. [In Russ]. DOI: 10.21440/2307-2091-2023-1-139-147.

29. Montiel L., Dimitrakopoulos R. Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach. European Journal of Operational Research. 2015, vol. 247, no 1, pp. 166-178. DOI: 10.1016/j.ejor.2015.05.002.

30. Романченко С. Б., Нагановский Ю. К., Корнев А. В. Инновационные способы контроля пылевзрывобезопасности горных выработок. Journal of Mining Institute. 2021, no. 252, pp. 927—936. [In Russ]. DOI: 10.31897/PMI.2021.6.14.

31. Qiao Shuo, Jingyi Xia, Yimin Xia, Zaizheng Liu, Jinshu Liu, Ailun Wang Establishment of coal-rock constitutive models for numerical simulation of coal-rock cutting by conical picks. Periodica Polytechnica Civil Engineering. 2019, vol. 63, no. 2, pp. 456—464. DOI: 10.3311/ PPci.13084.

32. Rajwa S. The influence of the geometrical construction of the powered roof support on the loss of a long-wall working stability based on the practical experience. Archives of Mining Sciences. 2020, vol. 65, no. 3, pp. 511—529. DOI: 10.24425/ams.2020.134132.

33. Guangxing Bai, Tianlong Xu Coal mine safety evaluation based on machine learning: A BP neural network model. Computational Intelligence and Neuroscience. 2022, vol. 2022. DOI: 10.1155/2022/5233845.

34. Shishlyannikov D., Zvonarev I. Investigation of the destruction process of potash ore with a single cutter using promising cross cutting pattern. Applied Sciences. 2021, vol. 11, no. 1, article 464. DOI: 10.3390/app11010464.

35. Kalinin S. I., Rout G. N., Ignatov Yu. M., Cherdantsev A. M. Justification of daily coal mining from lava 400 meters long in the conditions of the V.D. Yalevsky mine. Bulletin of the Kuzbass State Technical University. 2019, vol. 129, no. 5, pp. 27—34. [In Russ]. DOI: 10.26730/ 1999-4125-2018-5-27-34.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.