Validation of the chosen cutoff grade value in open pit mine design

A cutoff grade in open pit mining is set based from the analysis of alternative design solutions with regard to geological, geotechnical and economic factors. In open pit mining, the minimum economically rational content of a useful component, or a cutoff grade is expedient to be found with allowance for a stripping ratio in an estimation ore block. The optimized cutoff grade is a function of the net present value of the open pit mine project implementation, and is to be periodically revised during adjustment of project documentation and open pit mining plans, in operational geological re-exploration, in amendment and updating of the block model of ore deposits, and upon modification of mineral mining and processing technologies. The implemented research proves that in the system analysis of parameters and performance of an open pit mine, the cutoff grade can only be adopted given the stripping ratio is taken into account. A lower cutoff grade allows higher NPV but reduced general income received from the product sales unadjusted for discounting.

Keywords: mineral deposit, ore, open pit mining, design, cutoff grade, net present value, open pit limits, economic evaluation.
For citation:

Fomin S. I., Govorov A. S. Validation of the chosen cutoff grade value in open pit mine design. MIAB. Mining Inf. Anal. Bull. 2023;(12):169-182. [In Russ]. DOI: 10.25018/0236_ 1493_2023_12_0_169.

Issue number: 12
Year: 2023
Page number: 169-182
ISBN: 0236-1493
UDK: 622.3
DOI: 10.25018/0236_1493_2023_12_0_169
Article receipt date: 10.04.2023
Date of review receipt: 27.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

S.I. Fomin1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-0939-1189,
A.S. Govorov1, Graduate Student, e-mail:, ORCID ID: 0000-0001-9071-862X,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

A.S. Govorov, e-mail:


1. Chanda E. K. Network linear programming optimisation of an integrated mining and metallurgical complex. Advances in applied strategic mine planning. 2018, pp. 269—285. DOI: 10.1007/978-3-319-69320-0_18.

2. Dagdelen K., Kawahata K. Value creation through strategic mine planning and cutoffgrade optimization. Mining Engineering. 2008, vol. 60, no. 1, pp. 39—45.

3. Dimitrakopoulos R., Martinez L., Ramazan S. Optimising open pit design with simulated orebodies and Whittle Four-X. A maximum upside/minimum downside approach. Australasian Institute of Mining and Metallurgy Publication Series. 2007, pp. 201—206.

4. Tahernejad M. M., Ataei M., Khalokakaie R. A practical approach to open-pit mine planning under price uncertainty using information gap decision theory. Journal of Mining and Environment. 2018, vol. 9, no. 2, pp. 527—537. DOI: 10.22044/jme.2017.6220.1439.

5. Armstrong M., Lagos T., Emery X., Homem-de-Mello T., Lagos G., Sauré D. Adaptive open-pit mining planning under geological uncertainty. Resources Policy. 2021, vol. 72, article 102086. DOI: 10.1016/j.resourpol.2021.102086.

6. Hoerger S., Hoffman L., Seymour F. Mine planning at Newmonts Nevada operations. Mining Engineering. 1999, vol. 51, pp. 26—30.

7. Glacken I. M., Snowden D. V., Edwards A. C. Mineral resource estimation. Mineral resource and ore reserve estimation. Mining and metallurgy guide to good practice. The Aus. Inst. 2001, pp. 189—198.

8. Guo H., Nguyen H., Vu D. A., Bui X. N. Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach. Resources Policy. 2019, vol. 74, no. 3, article 101474. DOI: 10.1016/j.resourpol.2019.101474.

9. Lerchs H., Grossmann I. F. Optimum design of open-pit mines. CIM Bulletin. 1965, vol. 58, pp. 47—54.

10. Whittle J. A decade of open pit mine planning and optimization — the craft of turning algorithms into packages. Proceedings of APCOM'99: Computer Applications in the Minerals Industries: 28 International Symposium. Golden, Colorado, USA, 1999, pp. 15—24.

11. Belyakov N. N. Modeling of open-pit mining. MIAB. Mining Inf. Anal. Bull. 2014, no. 12, pp. 45—51. [In Russ].

12. Gavrishev S. E., Zalyadnov V. Yu. Expansion of the open-pit mining boundaries at the integrated development of the subsoil area. Aktual'nye problemy gornogo dela. 2016, no. 1, pp. 11—15. [In Russ].

13. Hill J. H. Geological and economical estimate of mining projects. London: Informa Group, 1993. 85 p.

14. Kaputin Yu. E. Informatsionnye tekhnologii planirovaniya gornykh rabot [Information technologies of planning of mining operations], Saint-Petersburg, Nedra, 2008, 420 p.

15. Hustrulid W. A., Kuchta M. E. Open pit mine planning & design. Vol. 1. Fundamentals. Rotterdam, 1998, 735 p.

16. Anisimov K. A., Nikiforov A. V. Modern technologies of diamondiferous deposits mining. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2023, vol. 334, no. 1, pp. 196—208. [In Russ]. DOI: 10.18799/24131830/2023/1/3837.

17. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 40—56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

18. Fomin S. I. Justification of technological solutions in the organization of ore pit mining. Journal of Mining Institute. 2016, vol. 221, pp. 644—650. [In Russ].

19. Matrokhina K. V., Trofimets V. Ya., Mazakov E. B., Makhovikov A. B., KHaykin M. M. Development of the methodology of scenario analysis of investment projects of enterprises of mineral and raw materials complex. Journal of Mining Institute. 2023, vol. 259, pp. 112—124. [In Russ]. DOI: 10.31897/PMI.2023.3.

20. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 15, no. 11, pp. 1306—1311.

21. Koteleva N., Khokhlov S., Frenkel I. Digitalization in open-pit mining: a new approach in monitoring and control of rock fragmentation. Applied Sciences. 2021, vol. 11, no. 22, article 10848. DOI: 10.3390/app112210848.

22. Bragin V. I., Kharitonova M. Yu, Matsko N. A. Probabilistic approach to the assessment of dynamic board maintenance. Journal of Mining Institute. 2021, vol. 251, pp. 617—625. [In Russ]. DOI: 10.31897/PMI.2021.5.1

23. Gilani S. O., Sattarvand J., Hajihassani M., Abdullah S. S. A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty. Resources Policy. 2020, vol. 68, article 101738. DOI: 10.1016/j.resourpol.2020.101738.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.