Back to search

Substantiation of choice of a platform for material flow control in metallurgical silicon production

Under conditions of competition on the silicon market, it is necessary to modify process flows including mining operations connected with the supply of ore materials (pretreatment and processing of quartz raw material). Accumulation of refractory manmade waste violates geological situation. The existing systems of automated monitoring and control fall short of the modern requirements, specifically, in terms of consumption of the main and auxiliary resources and industrial emission inventory. It is advisory to introduce automated systems of recording material flows and calculating material balances, including the sphere of pretreatment and concentration of quartzite. Based on the information on the material flows at an operating plant, the relevant database is generated and the package of measures is developed to enhance the process efficiency. The system includes a digital framework to be filled and adjusted for a specific production. This article presents the comparative analysis of three high-rating MES platforms applicable in the framework of digital transformation in the mining and metallurgical industries. The beneficial and adverse factors for the introduction of the automated systems in the silicon production are revealed, and the general requirements for the software to ensure sustainable operation of equipment are formulated.

Keywords: metallurgical silicon, microsilica, manmade waste, material balance, quartzite, orethermal furnace, automated process flow control, MES.
For citation:

Bazhin V. Yu., Masko O. N., Anufriev A. S. Substantiation of choice of a platform for material flow control in metallurgical silicon production. MIAB. Mining Inf. Anal. Bull. 2024;(1-1):206-219. [In Russ]. DOI: 10.25018/0236_1493_2024_011_0_206.

Issue number: 1
Year: 2024
Page number: 206-219
ISBN: 0236-1493
UDK: 621.365.3
DOI: 10.25018/0236_1493_2024_011_0_206
Article receipt date: 25.05.2023
Date of review receipt: 15.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2024
About authors:

V.Yu. Bazhin1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0001-8231-3833,
O.N. Masko1, Graduate Student, e-mail:, ORCID ID: 0000-0002-7512-1099,
A.S. Anufriev, Development Director, Engineering Laboratory Ltd., 197341, Saint-Petersburg, Russia, e-mail: a@ануфриев.рф,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

O.N. Masko, e-mail:


1. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., YAkovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2022, vol. 259, pp. 95—111. [In Russ]. DOI: 10.31897/PMI.2022.100.

2. Litvinenko V. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2019, vol. 29, no. 1. DOI: 10.1007/s11053-019-09568-4.

3. Jaskó S., Skorp A., Holczinger T., Chovan T., Abonyi J. Development of manufacturing execution systems in accordance with Industry 4.0 requirements. Areview of standardand ontologybased methodologies and tools. Computers in Industry. 2020, vol. 123, no. 2, article 103300. DOI: 10.34218/IJM.10.2.2019.010.

4. Negri E., Berardi S., Fumagalli L., Macchi M. MES-integrated digital twin frameworks. Journal of Manufacturing Systems. 2020, vol. 56, no. 6, pp. 58—71. DOI: 10.1016/j.jmsy.2020.05.007.

5. Li F., Wu J., Dong F., Lin J., Sun G., Chen H., Shen J. Ensemble machine learning systems for the estimation of steel quality control. Proceedings of 2018 IEEE Conference on Big Data. 2018, pp. 2245—2252. DOI: 10.1109/BigData.2018.8622583.

6. Abburu S., Berre A., Jacoby M. COGNITWIN — hybrid and cognitive digital twins for the process industry. Proceedings of 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). 2020. DOI: 10.1109/ICE/ITMC49519.2020.9198403.

7. Rozs R., Ando M. Collaborative systems, operation and task of the manufacturing execution systems in the 21st century industry. Periodica Polytechnica Mechanical Engineering. 2020, vol. 64, no. 1, pp. 51—66. DOI: 10.3311/PPme.14413.

8. Safiullin R. N., Afanasyev A. S., Reznichenko V. V. The concept of development of monitoring systems and management of intelligent technical complexes. Journal of Mining Institute. 2019, vol. 237, pp. 322—330. [In Russ]. DOI: 10.31897/pmi.2019.3.322.

9. Fedorova E. R., Pupysheva E. A., Morgunov V. V. Settling parameters determined during thickening and washing of red muds. Tsvetnye Metally. 2023, no. 4, pp. 77—84. [In Russ]. DOI: 10.17580/tsm.2023.04.10.

10. Fedorova E., Pupysheva E., Morgunov V. Modelling of red-mud particle-solid distribution in the feeder cup of a thickener using the combined CFD-DPM approach. Symmetry. 2022, vol. 14, article 2314. DOI: 10.3390/ sym14112314.

11. Karlina A. I., Kondratiev V. V., Balanovsky A. E., Kolosov A. D., Ivanchik N. N. Results of modification of cast iron by carbon nanostructures of gas cleaning dust of silicon production. Advances in Engineering Research. International Conference on Aviamechanical Engineering and Transport. 2018, vol. 158, pp. 169—173. DOI: 10.2991/avent-18.2018.33.

12. Martirosyan A. V., Ilyushin Yu.V., Afanaseva O. Development of a distributed mathematical model and control system for reducing pollution risk in mineral water aquifer systems. Water. 2022, vol. 14, no. 2, pp. 151. DOI: 10.3390/w14020151.

13. Sivtsov А. V., Yolkin K. S., Kashlev I. M., Karlina I. Processes in the charge and hearth zones of furnace working spaces and problems in controlling the batch dosing mode during the smelting of industrial silicon and high-silicon ferroalloys. Metallurg. 2020, vol. 64(5-6), pp. 396—403. [In Russ]. DOI: 10.1007/s11015-020-01008-6.

14. Sindland C., Tangstad M. Production rate of SiO gas from industrial quartz and silicon. Metallurgical and Materials Transactions. 2020, vol. 52, no. 3. DOI: 10.1007/s11663-021-02143-4.

15. Chigondo F. From metallurgical-grade to solar-grade silicon: An overview. Silicon. 2018, vol. 10, pp. 789—798. DOI: 10.1007/s12633-016-9532-7.

16. Nemchinova N., Hoang V. V., Tyutrin A. Development of ore-thermal melting technology for agglomerated charge containing technogenic raw material in silicon production.Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 12, pp. 948—954. [In Russ]. DOI: 10.17073/0368-0797-2017-12-948-954.

17. Leonova M. S., Timofeeva S. S. Environmental and economic damage from the dust waste formation in the silicon production. IOP Conference Series Earth and Environmental Science. 2019, vol. 229, no. 1, article 012022. DOI: 10.1088/1755-1315/229/1/012022.

18. Vasilev B. Yu., Mustafin M.G. Digital relief models of open-pit mining facilities: Analysis and optimization. MIAB. Mining Inf. Anal. Bull. 2023, no. 9, pp. 141—159. [In Russ]. DOI: 10. 25018/0236_1493_2023_9_0_141.

19. Mustafin M. G., Kologrivko A. A., Vasil'ev B. Yu. Accuracy of digital terrain modeling based on periodic airborne laser scanning of a mining object. Gornyi Zhurnal. 2023, no. 2, pp. 56—62. [In Russ]. DOI: 10.17580/gzh.2023.02.09.

20. Tarasov P. I., Khazin M. L., Apakashev R.A. Mining waste recycling in the Ural. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 21—31. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-21-31.

21. Ulanov A. Yu., Bahmin V. I., Korobova O. S. Improvement of subsoil use waste management. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 48—55. [In Russ]. DOI: 10.25018/0236-1493-20206-0-48-55.

22. Kulchickiy A. A., Mansurova O. K., Nikolaev M. Yu. Recognition of defects in hoisting ropes of metallurgical equipment by an optical method using neural networks. Chernye Metally. 2023, no. 3, pp. 81—88. [In Russ]. DOI: 10.17580/chm.2023.03.13.

23. Rozhikhina I. D., Nokhrina O. I., Yolkin K. S., Golodova M. A. Ferroalloy production: state and development trends in the world and Russia. IOP Conference Series Materials Science and Engineering. 2020, vol. 866, no. 1, article 012004. DOI: 10.1088/1757-899X/866/1/012004.

24. Yolkin K. S., Yolkin D. K., Kolosov A. D., Ivanov N. A., Shtayger M. G. Technologies, which allow to reduce an impact of metal silicon production on the environment. IOP Conference Series Materials Science and Engineering. 2018, vol. 411, no. 1, article 012028. DOI: 10.1088/1757899X/411/1/012028.

25. Lyutyagin D. V., Yashin V. P., Zabaikin Yu. V., Yakunin M. A. Features and trends of the digital transformation of the Russian mining industry. Economics: Yesterday, Today and Tomorrow. 2019, no. 9, pp. 147—157. [In Russ].

26. Gervic М. А. Digitalisation of mining and processing. Avtomatizatsiya v promyshlennosti. 2021, no. 4, pp. 63—72. [In Russ]. DOI: 10.25728/avtprom.2020.04.10.

27. Potekhin V. V., Bahrami A. H., Katalinič B. Developing manufacturing execution system with predictive analysis. IOP Conference Series Materials Science and Engineering. 2020, vol. 966, no. 1, article 012117. DOI: 10.1088/1757-899X/966/1/012117.

28. Mohammed W. M., Ferrer B. R., Iarovyi S., Negri E., Fumagalli L., Lobov A., Lastra J. M. Generic platform for manufacturing execution system functions in knowledge-driven manufacturing systems. International Journal of Computer Integrated Manufacturing. 2018, vol. 31, no. 3, pp. 262—274. DOI: 10.1080/0951192X.2017.1407874.

29. Aramja A., Kamach Q., Elmeziane R. Companies’ perception toward manufacturing execution systems. International Journal of Electrical and Computer Engineering. 2021, vol. 11, no. 4, pp. 3347—3355. DOI: 10.11591/ijece.v11i4.pp3347-3355.

30. Aleksandrova T. N., Chanturiya A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit. Journal of Mining Institute. 2022, vol. 256, pp. 517—526. [In Russ]. DOI: 10.31897/PMI.2022.58.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.