Defect formation in synthetic quartz crystals under uniaxial compression

The paper discusses the possibility of using a complex of non-destructive acoustic emission and laser ultrasonic testing methods to study the behavior of synthetic quartz crystals under cyclic loading. An automated laser ultrasonic structureroscope GEOSKAN-2MU was used to study the mechanical properties of synthetic quartz subjected to two successive loading cycles, monitoring the process of formation of defects in its internal structure. The experimental results were interpreted using numerical simulation based on the Drucker-Prager model, which describes the behavior of a medium under uniaxial compression, taking into account its strength characteristics. It is found that, despite the presence of a small number of defects and heterogeneities in the specimen before loading, the onset of microcrack growth occurs at an external load of 30 MPa, which is about ten percent of the failure stress. At an external load of 75 MPa, microcracks more than 20 mm long appear in the central part of the specimen. The results of this study can be used to develop a numerical model that will take into account the nonlinear dependence of deformations and stresses on the external load.

Keywords: synthetic quartz, laser ultrasonic testing, acoustic emission, structureroscope, uniaxial compression, microcrack, numerical simulation, strength properties.
For citation:

Jan Pruška, Kravcov A. N., Sas I. E., Cherepetskaya E. B., Viegas Jose Victorino, Borisov N. G. Defect formation in synthetic quartz crystals under uniaxial compression. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):73—80. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_73.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 73-80
ISBN: 0236-1493
UDK: 539.431.1 + 621.7.01
DOI: 10.25018/0236_1493_2021_41_0_73
Article receipt date: 20.01.2021
Date of review receipt: 25.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Jan Pruška1, Assistant professor;
Kravcov A. N.1, PhD, kravtale@fsv.cvut.cz;
Sas I. E.2, engineer;
Cherepetskaya E. B.2, Dr. Sci. (Eng.), Professor;
Viegas Jose Victorino2, student;
Borisov N. G.2, PhD-student;
1 Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7/2077, Prague 6 — Dejvice, 166 29, Czech Republic;
2 National Research Technological University «MISiS» , Moscow, Russia.

 

For contacts:
Bibliography:

1. Preteseille M., Lenoir T. Mechanical fatigue behavior in treated/stabilized soils subjected to a uniaxial flexural test. International Journal of Fatigue, 2016, Vol. 14, pp. 1923—1929. DOI: 10.1016/j.trpro.2016.05.159.

2. González-Cao J., Varas F., Bastante F. G., Alejano L. R. Ground reaction curves for circular excavations in non-homogeneous, axisymmetric strain-softening rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2013, Vol. 5, pp. 431—442. DOI: 10.1016/j.jrmge.2013.08.001.

3. Jia L. C., Chen M., Zhang W., Xu T., Zhou Y., Hou B., Jin Y. Experimental study and numerical modeling of brittle fracture of carbonate rock under uniaxial compression. Mechanics Research Communications, 2013, Vol. 50, pp. 58—62. DOI: 10.1016/j. mechrescom.2013.04.002.

4. Xue L., Qin S., Sun Q., Wang Y., Lee L. M., Li W. A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mechanics and Rock Engineering, 2014, Vol. 47, pp. 1183–119. DOI: 10.1007/s00603-013-0479-3.

5. Li X. Z., Shao Z. S., Fan L. F. A micro-macro method for predicting the shear strength of brittle rock under compressive loading. Mechanics Research Communications, 2016, Vol. 75, pp. 13—19. DOI: 10.1016/j.mechrescom.2016.05.008.

6. Brantut N., Heap M. J., Meredith P. G., Baud P. Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 2013, Vol. 52, pp. 17—43. DOI: 10.1016/j.jsg.2013.03.007

7. Revil-Baudard B., Cazacu O. Role of the plastic flow of the matrix on yielding and void evolution of porous solids: Comparison between the theoretical response of porous solids with Tresca and von Mises matrices. Mechanics Research Communications, 2014, Vol. 56, pp. 69—75. DOI: 10.1016/j.mechrescom.2013.11.008.

8. Aker E., Kühn D., Vavryèuk V., Soldal M., Oye V. Experimental investigation of acoustic emissions and their moment tensors in rock during failure. International Journal of Rock Mechanics & Mining Sciences, 2014, Vol. 70, pp. 286—295. DOI: 10.1016/j. ijrmms.2014.05.003.

9. Lin J., Shao J.-F., Kondo D.. A two scale model of porous rocks with Drucker–Prager matrix: Application to a sandstone. Mechanics Research Communications, 2011, Vol. 38, pp. 602—606. DOI: 10.1016/j/mechrescom2011.08.005.

10. Zhang X.-P., Wu S., Afolagboye L. O., Wang S., Han G. Using the point load test to analyze the strength anisotropy of quartz mica schist along an exploration adit. Rock Mechanics and Rock Engineering, 2015, Vol. 49, pp. 1967—1975. DOI: 10.1007/s00603015-0792-0.

11. Guzmana I. L., Iskander M., Bless S. Observations of projectile penetration into a transparent soil. Mechanics Research Communications, 2015, Vol. 70, pp. 4—11. DOI: 10.1016/j.mechrescom.2015.08.008.

12. Ohtsu M. Acoustic emission (AE) and related non-destructive evaluation (NDE) techniques in the fracture mechanics of concrete. Elsevier Inc., 2015, 318 p.

13. Shibaev I. A., Vinnikov V. A., Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020, No. 7, pp. 125—134. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-125134.

14. Shibaev, I. A., Morozov, D. V., Dudchenko, O. L., Pavlov, I. A. Estimation of local elastic moduli of carbon-containing materials by laser ultrasound. Key Engineering Materials, 2018, Vol. 769, pp. 96—101. DOI: 10.4028/www.scientific.net/KEM.769.96.

15. Abaqus 6.13 (Abaqus/CAE User’s Guide), available at http://130.149.89.49:2080/ v6.13/index.html, 2020.

16. Yang Q., Zhang J.-M., Zheng H., Yao Y. Constitutive Modeling of Geomaterials. Springer Series in Geomechanics and Geoengineering, 2013, 810 p.

17. Oka F., Murakami A., Uzuoka R., Kimoto S. Computer Methods and Recent Advances in Geomechanics. CRC Press, 2014, 472 p.

18. Jiang J.-F., Wu Yu-F. Identification of material parameters for Drucker–Prager plasticity model for FRP confined circular concrete columns. International Journal of Solids and Structures, 2012, Vol. 49, pp. 445–456. DOI: 10.1016/j.ijsolstr.2011.10.002.

19. Practical Acoustic Emission Testing, Springer, 2016, 110 p.

20. Zhou J. W., Xu W. Y., Yang X. G. A microcrack damage model for brittle rocks under uniaxial compression. Mechanics Research Communications, 2010, Vol. 37, pp. 399—405. DOI: 10.1016/j.mechrescom.2010.05.001.

21. Stoeckhert F., Molenda M., Brenne S., Alber M. Fracture propagation in sandstone and slate — Laboratory experiments, acoustic emissions and fracture mechanics. Journal of Rock Mechanics and Geotechnical Engineering, 2015, Vol. 3, pp. 237—249. DOI: 10.1016/j.jrmge.2015.03.011.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.