Improvement of manufacturability and endurance of percussion drill assemblies: Review and analysis of engineering solutions

One of the ways of improving performance and cost effectiveness of drilling machines is selection and justification of design parameters for the components of the percussion assemblies on the basis of the manufacturability and reliability standards. A percussive assembly is a critical converter of the impact energy to the useful energy of an impact momentum aimed at destruction. Certain geometry of colliding elements can only ensure an optimum impact momentum to best conform with the properties of an object being fractured. The choice and justification of such geometry should involve, among other things, optimization of manufacturability, which often ends in complexity and sometimes impossibility of using colliding elements having geometry more complex than a cylinder. An integral part of an impact assembly of a drilling machine is a rock-breaking tool. The design of the latter also has an influence on the efficient conversion of the impact energy to the useful energy of fracture. This article describes potentiality of analyzing rational geometry of impact assemblies with regard to their manufacturability standards and offers optional engineering solutions on the impact assembly components capable to ensure both increased productivity of drilling and reduction in financial and material expenses connected with manufacturing.

Keywords: drilling machine, impact, piston, waveguide, percussion assembly, piston geometry, drilling tool, drill bit, percussion assembly manufacturability.
For citation:

Teplyakova A. V., Azimov A. M., Alieva L., Zhukov I. A. Improvement of manufacturability and endurance of percussion drill assemblies: Review and analysis of engineering solutions. MIAB. Mining Inf. Anal. Bull. 2022;(9):120-132. [In Russ]. DOI: 10.25018/0236_ 1493_2022_9_0_120.

Issue number: 9
Year: 2022
Page number: 120-132
ISBN: 0236-1493
UDK: 62-24
DOI: 10.25018/0236_1493_2022_9_0_120
Article receipt date: 25.03.2022
Date of review receipt: 07.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.08.2022
About authors:

A.V. Teplyakova1, Student, e-mail:,
A.M. Azimov1, Graduate Student, e-mail:, ORCID ID: 0000-0002-4062-0584,
L. Alieva1, Graduate Student, e-mail:,
I.A. Zhukov1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail:, ORCID ID: 0000-0001-9068-3201,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

I.A. Zhukov, e-mail:


1. Tolstunov S. A., Polovinko A. V. Determination of the effectiveness of the use of impact machines in the extraction of strong rocks. Journal of Mining Institute. 2013, vol. 205, pp. 36—39. [In Russ].

2. Shadrina A. V., Saruev L. A. Analysis and scientific generalization of the results of studies of the shock-rotational method of drilling small-diameter wells from underground mine workings. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2015, vol. 326, no. 8, pp. 120—136. [In Russ].

3. Yungmeister D. A., Isaev A. I., Yacheikin A. I., Soboleva P. D. Field study of DTH hammer operation with rock drilling machines. MIAB. Mining Inf. Anal. Bull. 2021, no. 3, pp. 28—36. [In Russ]. DOI: 10.25018/0236-1493-2021-3-0-28-36.

4. Kenneth Omokhagbo Afebu, Yang Liu, Evangelos Papatheou Feature-based intelligent models for optimisation of percussive drilling. Neural Networks. 2022, vol. 148, pр. 266—284. DOI: 10.1016/j.neunet.2022.01.021.

5. Danilov B. B., Smolyanitsky B. N., Cheshchin D. O. Substantiation of schematic diagrams of deflecting devices in installations of horizontal directional drilling of wells. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no. 3, pp. 106—116. [In Russ].

6. Repin A. A., Timonin V. V., Alekseev S. E., Kokoulin D. I., Popelyukh A. I. Increasing the power of small-sized submersible pneumatic hammers. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 6, pp. 86—93. [In Russ].

7. Danilov B. B., Rechkin A. A., Cheshchin D. O. Experimental positioning of controllable pneumatic piercing machine pivot, MIAB. Mining Inf. Anal. Bull. 2018, no. 7, pp. 116—123. [In Russ]. DOI: 10.25018/0236-1493-2018-7-0-116-123.

8. Sabitov A. E., Urazbahtin R. Yu. research of the parameters of the hammers-strikers for the tunnel complexes during special workings. Innovatsii na transporte i v mashinostroenii: Sbornik trudov IV mezhdunarodnoy nauchno-prakticheskoy konferentsii [Innovations in transportation and mechanical engineering: proceedings of the IV international scientific-practical conference], Saint-Petersburg, NMSU «Gornyy», 2016, pp. 48—51. [In Russ].

9. Rodin M. S., Ivanov S. L. The Rationale for the choice of parameters of the device for the destruction of lumps in the underground mines of the company De Beers. Journal of Mining Institute. 2009, vol. 182, pp. 105—109. [In Russ].

10. Andersson H., Sigfridsson E., Simonsson K., Leidermark D., Hilding D., Schill M. Validation of a co-simulation approach for hydraulic percussion units applied to a hydraulic hammer. Advances in Engineering Software. 2019, vol. 131, pр. 102—115. DOI: 10.1016/j.advengsoft.2018.12.001.

11. Kerimov Z. E. Hydraulic impact machines and their practical application. Izvestiya Tula State University. Sciences of Earth. 2019, no. 10, pp. 481—489. [In Russ].

12. Dong Ge, Zhongwei Suo, Jianming Peng, Kun Bo, Jingqing Cheng, Pengyu Zhang Dynamic responses of a fluidic hammer with hydraulic-damping-device. Journal of Petroleum Science and Engineering. 2021, vol. 200, article 108243. DOI: 10.1016/j.petrol.2020.108243.

13. Eremjants V. E., Niu V. V. About selection of parameters of hydraulic vibro-impact machines for surface cleaning. Journal of Advanced Research in Technical Science. 2016, no. 2, pр. 20—24.

14. Lagunova Yu. A., Mitusov A. A., Reshetnikova O. S. Specific features of the operation of impact mechanisms. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gorno-shakhtnogo i neftepromyslovogo oborudovaniya. 2016, vol. 1, pp. 72—75. [In Russ].

15. Repin A. A., Alekseev S. E., Popelyukh A. I. Methods of increasing the reliability of parts of impact machines. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no. 4, pp. 94—101. [In Russ].

16. Lazutkin S. L., Lazutkina N. A. Determination of rational parameters of the executive elements of the shock system of an adaptive shock device. Sovremennye naukoemkie tekhnologii. 2019, no. 5, pp. 58—63. [In Russ].

17. Iungmeister D. A., Korolev R. I., Karlov V. A. Improvement of shock system of hydraulic drill to increase drilling intensification. IOP Conference Series: Earth and Environmental Science. 2018, vol. 194, no. 3, article 032006. DOI: 10.1088/1755-1315/194/3/032006.

18. Pavlov E. V. Research of design and technological features of basic parts of pneumatic hammers and rock-breaking tools. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii. 2013, no. 3, pp. 68—76. [In Russ].

19. Pavlov E. V. Ensuring the mechanical properties of rotary parts operating under shock loads. Actual Problems in Machine Building. 2016, no. 3, pp. 324—329. [In Russ].

20. Popelyukh P. A., Popelyukh A. I. Improving the reliability of parts of impact machines using isothermal hardening. Obrabotka Metallov. Metal Working and Material Science. 2012, no. 4(57), pp. 79—82. [In Russ].

21. Kyzyrov K. B., Mitusov A. A., Reshetnikova O. S. Design research of parameters of hydraulic hammer for mining and construction. MIAB. Mining Inf. Anal. Bull. 2018, no. 9, pp. 220—226. [In Russ]. DOI: 10.25018/0236-1493-2018-9-0-220-226.

22. Grinko A. A., Sysoev N. I., Grinko D. A. Improving shearing efficiency of percussion rotary drill bits. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 102—115. DOI: 10.25018/02361493-2020-9-0-102-115.

23. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 3, pp. 1555—1570. DOI: 10.1007/s00603-021-02707-5.

24. Bolobov V. I., Le Thanh Binh, Chupin S. A., Plashchinsky V. A. Dependence of the lifelength of a hydraulic hammer pick on the wear resistance of its material. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 68—79. [In Russ]. DOI 10.25018/0236-1493-2020-5-0-68-79.

25. Bolobov V. I., Le Thanh Binh Patterns of destruction of the drummer material with repeated single impacts. Journal of Mining Institute. 2018, vol. 233, pp. 525—533. DOI: 10.31897/ PMI.2018.5.525.

26. Sysoev N. I., Grinko A. A., Grinko D. A. Justification of structure and rational design for hammer drills for helical milling. MIAB. Mining Inf. Anal. Bull. 2021, no. 7, pp. 113—124. [In Russ]. DOI: 10.25018/0236_1493_2021_7_0_113.

27. Zhukov I. A., Smolyanitsky B. N., Timonin V. V. Improvement of down-the-hole air hammer efficiency by optimizing shapes of colliding parts. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2018, no. 2, pp. 37—42. [In Russ]. DOI: 10.15372/FTPRPI20180205.

28. Zhukov I. A., Timofeev E. G., Molchanov V. V. Modeling of longitudinal vibrations of complex strikers of shock systems. Nauchnoe obozrenie. 2015, no. 5, pp. 90—93. [In Russ].

29. Zhukov I. A., Repin A. A., Timofeev E. G. Automated calculation and analysis of impacts generated in mining machine by anvil blocks of complex geometry. IOP Conference Series: Earth and Environmental Science. 2018, vol. 134, article 012071. DOI: 10.1088/1755-1315/134/1/012071.

30. Zhukov I. A., Dvornikov L. T. Patent RU 2484944. 2013. [In Russ].

31. Karamanits F. I., Gromadskiy A. S., Kuzmenko D. I. Engineering and testing of new drill bits for compensatory drilling in hard rocks. MIAB. Mining Inf. Anal. Bull. 2018, no. 2, pp. 175—184. [In Russ]. DOI: 10.25018/0236-1493-2018-2-0-175-184.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.