Estimation methods of wear mechanisms in cutting heads of mining machines: Review

Mineral mining commonly uses various mining machines for excavation, loading and haulage. The long-term use aggravates wear of major assemblies and cutting heads of mining machines. This problem is of the highest concern for the extraction-and-loading machines employed in mineral mining and in reclamation operations characterized by increased rates of wear. The wear progression and the remaining life estimation in extraction-and-loading machines are well examined in the world practice. At the same time, the unique combination of diverse climatic, geological and geotechnical conditions at each mineral deposit governs the difficulty of construction of a generalized model of wear progression. In particular, insufficient research is devoted to assessment of residual life under high-rate wear under extremely high temperatures or under jump in temperature of machine tools. Such conditions are typical of coal and peat fields characterized by initiation and development of endogenous fires. The scope of this analytical review encompasses estimation methods of different wear mechanisms and the effect of temperature on wear rate, as well as determination of residual life of extractionand-loading machine components in operation in high-temperature rock mass.

Keywords: extraction-and-loading machines, wear, residual life, endogenous fires, coal ignition, machine tools, extreme conditions.
For citation:

Gromyka D. S., Utenkova T. G., Korotkova O. Yu. Estimation methods of wear mechanisms in cutting heads of mining machines: Review. MIAB. Mining Inf. Anal. Bull. 2021;(2):75-86. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-75-86.

Issue number: 2
Year: 2021
Page number: 75-86
ISBN: 0236-1493
UDK: 620.178.38
DOI: 10.25018/0236-1493-2021-2-0-75-86
Article receipt date: 18.03.2020
Date of review receipt: 17.06.2020
Date of the editorial board′s decision on the article′s publishing: 10.01.2021
About authors:

D.S. Gromyka1, Graduate Student, e-mail:,
T.G. Utenkova1, Graduate Student,
O.Yu. Korotkova1, Graduate Student,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

D.S. Gromyka, e-mail:


1. Grzesik W. Tool wear and damage. Advanced machining processes of metallic materials. 2017, pp. 215–239.

2. Starzhinskii V. E., Soliterman Yu. L., Goman A. M., Osipenko S. A. Forms of damage to gear wheels: Typology and recommendations on prevention. Journal of Friction and Wear. 2008. Vol. 29. No 5. Pp. 340—353.

3. Trenie, iznashivanie i smazka. Terminy i opredeleniya, GOST 27674-88 [Friction, wear and lubrication. Terms and definitions, State Standart 27674-88]. Moscow, Standarty, 1992, 21 p.

4. Kazakova Yu. D., Vakhrushev S. I. Investigation of wear resistance of the working body of the building and road machines in various operating conditions. Stroitel'stvo i arkhitektura. Opyt i sovremennye tekhnologii. 2016, no 6, pp. 310—319. [In Russ].

5. Sharifov Z. Z., Aliev Ch. M., Kuliev A. M. Research of surface roughness influence on ware resistant characteristics of ship machinery and mechanisms parts’ surface layer processed with different methods. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova. 2018, no 6, pp. 1262—1272. [In Russ].

6. Chaus A. S., Rudnitskii F. I. Influence of cutting conditions of cast-metal cutting tools in their wear and durability: Analysis of cutting conditions of tools. Journal of Friction and Wear. 2007. Vol. 25. No 5. Pp. 416—421.

7. Pilyushina G. A. Wear specifics of construction and road machines operating tools. Novye materialy i tekhnologii v mashinostroenii. 2009, no 10, pp. 80—82. [In Russ].

8. Masloosh K. M., Eyre T. S. Abrasive wear and its application to digger teeth. Tribology International. 1985. Vol. 18. No 5. Pp. 259—266.

9. Bogdanovich P. N. Fatigue wear of materials under dynamic contact loading. Journal of Friction and Wear. 2013. No 34 (5). Pp. 349—357.

10. Bouzakis K.-D., Batsiolas M., Skordaris G., Stergioudi F., Michailidis N. Repetitive impact test near uncoated and coated cutting edges for assessing their fatigue behavior. CIRP Journal of Manufacturing Science and Technology. 2014. No 8. Pp. 63—69.

11. Pauschitz A., Roy M., Franek F. Mechanisms of sliding wear of metals and alloys at elevated temperatures. Tribology International. 2008. Vol. 41. No 7. Pp. 584—602.

12. Rojacz H., Pahr H., Baumgartner S., Varga M. High temperature abrasion resistance of differently welded structural steels. Tribology International. 2017. Vol. 113. Pp. 487–499. DOI: 10.1016/j.triboint.2017.01.039.

13. Talerov M. P., Bolobov V. I. Life and failures of tangential-rotary picks. Gornyi Zhurnal, 2018, No 4, pp. 77—81. [In Russ].

14. Kremcheev E. A., Gromyka D. S., Nagornov D. O. Techniques to determine spontaneous ignition of brown coal. Journal of Physics: Conference Series. 2018. Vol. 1118. No 1. Pp. 12—21.

15. Panachev I. A., Nasosov M. Yu., Antonov K. V. On the development of a model for interaction between cutting edge of walking excavator bucket and blasted rock. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2004, no 2, pp. 37—40. [In Russ].

16. Avdeeva E. S., Kuznecova V. N. Study on the impact of abrasive wear of excavator bucket tooth on the value of soil digging resistance. Trudy aspirantov i studentov GOU «Sibadi»: sbornik nauchnykh statey [Proceedings of postgraduates and students of SibADI state University: collection of scientific articles], Omsk, 2011, pp. 3—7. [In Russ].

17. Shkurov R. U., Rozhina M. A., Tadzhihodzhaeva M. R. The impact of depreciation of the teeth excavator bucket on the effectiveness of their use. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka. 2011, no 10, pp. 37—38. [In Russ].

18. Obidov N., Ruzibaev A., Asadova M., Ashurov Sh. Selection of teeth of bucket singlebucking excavators depending on operating conditions. World Science: Problems and Innovations. Materialy XXVIII mezhdunarodnoy nauchno-prakticheskoy konferentsii [World Science: Problems and Innovations. Materials of the XXVIII international scientific and practical conference], Penza, Nauka i Prosveshchenie, 2019, pp. 89—92. [In Russ].

19. Bosnjak S. M., Arsić M. A., Gnjatović N., Milenović I. L. J., Arsic D. Failure of the bucket wheel excavator buckets. Engineering Failure Analysis. 2018. No 84. Pp. 247—261.

20. Kumar B., Alam T. Excavator bucket tooth wear analysis. International conference on electrical, electronics, and optimization techniques (ICEEOT). 2016. Pp. 3364—3366. DOI: 10.1109/ICEEOT.2016.7755328.

21. Bolobov V. I., Chupin S. A., Bochkov V. S., Mishin I. I. Service life extension for rock cutters by increasing wear resistance of holders by thermomechanical treatment. Gornyi Zhurnal, 2019, No 5, pp. 67—71. [In Russ].

22. Rusinski E., Hamartkiewicz P., Kowalczyk M., Moczko P. Examination of the causes of a bucket wheel failure in a bucket wheel excavator. Engineering Failure Analysis. 2010. No 17. Pp. 1300—1312.

23. Sarychev V. D., Granovskii A. Yu., Nevskii S. A., Konovalov S. V., Gromov V. E. Wear model of an excavator bucket. AIP Conference Proceedings. 2017. Vol. 1909. No 1. Pp. 1—4. Article 020186.

24. Yingfrei G., Munoz P., Galloway A. Influence of cutting parameters and tool wear on the surface integrity of cobalt-based Stellite 6 alloy when machined under a dry cutting environment. Journal of Materials Engineering and Performance. 2016. Vol. 26. No 1. Pp. 312—326.

25. Munoz-Escalona P., Díaz N., Cassier Z. Prediction of tool wear mechanisms in face milling AISI 1045 steel. Journal of Materials Engineering and Performance. 2011. Vol. 21. No 6. Pp. 797—808.

26. Pauschitz A., Roy M., Franek F. Mechanisms of sliding wear of metals and alloys at elevated temperatures. Tribology International. 2008. Vol. 41. No 7. Pp. 584—602.

27. Singh G., Kaur M., Upadhyaya R. Wear and friction behavior of NiCrBSi coatings at elevated temperatures. Journal of Thermal Spray Technology. 2019. No 28. Pp. 1081—1102.

28. Torres H., Varga M., Widder F. J., Cihak U.-Bayr, Viskovic O., Ripoll M. R. Experimental simulation of high temperature sliding contact of hot rolled steel. Tribology International. 2016. Vol. 93. Pp. 745—754. DOI: 10.1016/J.TRIBOINT.2015.01.007.

29. Varga M., Badisch E. Temperature and load influence on in-situ formed layers during high temperature abrasion. Wear. 2017. Vol. 384. Pp. 114—123.

30. Roa J. J., Besharatloo H., Fargas G., Calvo J., Mateo A. Phase transformation under thermal fatigue of high Mn-TWIP steel: Microstructure and mechanical properties. Material Science & Engineering A. 2016. Vol. 677. Pp. 431—437.

31. Farivar H., Novokshanov D., Richter S., Lenz D., Bleck W., Prahl U. Core microstructuredepending bending fatigue behavior and crack growth of a case-hardened steel. Material Science & Engineering A. 2019. Vol. 762. Article 138040. DOI: 10.1016/J.MSEA.2019.138040.

32. Bibik V., Ivushkina N., Arhipova D. Calculation of the intensivity of adhesive-fatigue wear of cutting tools. IOP Conference Series: Material Science and Engineering. 2016. Vol. 142. No 1.

33. Teng Z., Wu H., Boller C., Starke P. A unified fatigue life calculation based on intrinsic thermal dissipation and microplasticity evolution. International Journal of Fatigue. 2020. Vol. 131. DOI: 10.1016/j.ijfatigue.2019.105370.

34. Ya. Qi, Wang B., Li Sh., Ren X., Zhou J., Li Yu., Mo J. Improved quantitative analysis method for evaluating fatigue cracks in thermal fatigue testing. Materials Letters. 2019. Vol. 242. Pp. 115—118.

35. Zhu D., Zhang X., Ding H. Tool wear characteristics in machining of nickel-based superalloys. International Journal of Machine Tools & Manufacture. 2013. No 64. Pp. 60—77.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.