Models and methods of aerogasdynamic calculations for ventilation networks in underground mines: Review

The article offers a review of the modern methods available for modeling and calculating aerogasdynamic processes in ventilation networks in underground mines. A special attention is paid to the latest advances in computational fluid dynamics (CFD). The foundations of CFD and the main procedures of high quality CFD modeling are described: the mesh convergence; the independence of the solution from a time step chosen; the verification of CFD models. The models of turbulence, which are most often used in the problems on mine ventilation, and their application ranges are presented. The R&D projects connected with CFD modeling of mine ventilation are reviewed. The main CFD-based research subjects in mine ventilation are: ventilation flows and ventilation methods in blind roadways; gas dynamics in mined-out voids and caving zones; mine fires; coal self-heating and endogenous fires; methane and dust dynamics and control. The relevance of the presented research rests upon the fact that CFD methods can greatly reduce the amount of physical experimentation as computation cost of CFD modeling currently gets lower thanks to higher-capacity computers and enhanced refinement of computer-aided models of physical systems under testing, while the full-scale and lab tests become more expensive, vice versa.

Keywords: mine ventilation, turbulence models, emergency ventilation mode, computational fluid dynamics, gas dynamics, CFD modeling, self-heating, endogenous fires, mine fires, dust control, methane control.
For citation:

Kazakov B. P., Kolesov E. V., Nakariakov E. V., Isaevich A. G. Models and methods of aerogasdynamic calculations for ventilation networks in underground mines: Review. MIAB. Mining Inf. Anal. Bull. 2021;(6):5-33. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_5.


The study was supported by the Russian Foundation for Basic Research, Project No. 19-15-50125.

Issue number: 6
Year: 2021
Page number: 5-33
ISBN: 0236-1493
UDK: 622.4; 004.942; 001.891.57
DOI: 10.25018/0236_1493_2021_6_0_5
Article receipt date: 06.08.2020
Date of review receipt: 10.09.2020
Date of the editorial board′s decision on the article′s publishing: 10.05.2021
About authors:

B.P. Kazakov1, Dr. Sci. (Eng.), Professor, Chief Researcher,
E.V. Kolesov1, Junior Researcher, e-mail:,
E.V. Nakariakov1, Engineer,
A.G. Isaevich1, Cand. Sci. (Eng.), Head of Sector,
1 Mining Institute, Ural Branch of Russian Academy of Sciences, 614007, Perm, Russia.


For contacts:

E.V. Kolesov, e-mail:


1. Blazek J. Computational fluid dynamics: principles and applications. 3d ed. Elsevier Science, San Diego, CA. 2015. 466 p.

2. Snegirev A. Yu. Vysokoproizvoditel'nye vychisleniya v tekhnicheskoy fizike. Chislennoe modelirovanie turbulentnykh techeniy: Uchebnoe posobie [High-performance computing in technical physics. Numerical modeling of turbulent flows: Tutorial], Saint-Petersburg, Izd-vo Politekhn. un-ta. 2009, 143 p.

3. Volkov K. N., Emel'yanov V. N. Modelirovanie krupnykh vikhrey v raschetakh turbulentnykh techeniy [Modeling of large eddies in calculations of turbulent flows], Moscow, Fizmatlit, 2008, 368 p.

4. Pope S. B. Turbulent Flows. Cambridge University Press, New York, 2000, 771 p.

5. Gosman A. D. Developments in CFD for industrial and environmental applications in wind engineering. Journal of Wind Engineering & Industrial Aerodynamics. 1999, no. 81, pp. 21–39.

6. Sorensen D. N., Nielsen P. V. Quality control of computational fluid dynamics in indoor environments. Indoor Air. 2003, no. 13, pp. 2–17.

7. Ansys fluent. Theory Guide. Release 18.0. Ansys, Inc. 2017. 1034 p.

8. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale. 1994, vol. 439, no. 1, pp. 5–21.

9. Mohammadi B., Pironneau O. Analysis of the K-Epsilon turbulence model. New York: Wiley, 1994, 194 p.

10. Kolesov E. V., Nakaryakov E. V. Selection of turbulence model in modeling of long blind drifts ventilation. Mining sciences: fundamental and applied issues. 2019, vol. 6, no. 3, pp. 82—89. [In Russ].

11. Marshall E. M., Bakker A. Computational fluid mixing. Fluid Dynamics Fluent Incorporated, 2001, 154 p.

12. Yakhot V., Orszag S. A., Thangam S., Gatski T. B., Speziale C. G. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: fluid dynamics. 1992, 4, pp. 1510–1520.

13. Bakker A. The colorful fluid mixing gallery. 2008. Available at: cfm (accessed 23 June 2020).

14. Wilcox D. C. Turbulence Modeling for CFD. La Canada, California: DCW Industries Inc. 1998. 477 p.

15. Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994, vol. 32, no. 8, pp. 1598–1605.

16. Menter F. R., Kuntz M., Langtry R. Ten Years of Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer. 2003, no. 4, pp. 625–632.

17. Lugin I. V., Alferova E. L. Heat losses during train movement in an underground tunnel under various operating conditions. Mining sciences: fundamental and applied issues. 2019, vol. 6, no. 2, pp. 181—185. [In Russ].

18. Gilmore R., Marts J., Brune J., Saki S., Bogin G., Grubb J. Simplifying CFD modeling of longwall gobs with a modular meshing approach. Mining Engineering. 2015, vol. 67, no. 3, pp. 68—72.

19. Branny M., Karch M., Wodziak W., Jaszczur M., Nowak R., Szmyd J. S. An experimental validation of a turbulence model for air flow in a mining chamber. Journal of Physics: Conference Series. 2014, vol. 530, article 012029.

20. Toraсo J., Torno S., Menendez M., Gent M., Velasco J. Models of methane behaviour in auxiliary ventilation of underground coal mining. International Journal of Coal Geology. 2009, vol. 80, pp. 35–43.

21. Parra M., Villafruela J., Castro F., Mendez C. Numerical and experimental analysis of different ventilation systems in deep mines. Building and Environment. 2006, vol. 41, pp. 87–93.

22. Dick J. B. Measurement of ventilation using tracer gas. Heating, piping, and air conditioning. 1950, vol. 22, no. 5, pp. 131–137.

23. Thimons E. D., Kissell F. N. Tracer gas as an aid in mine ventilation analysis. U.S. Bureau of Mines, Washington, DC. 1974. 17 p.

24. Xu G., Jong E., Luxbacher K., Ragab S. Computational fluid dynamics study of tracer gas dispersion in a mine after different ventilation damage scenarios. SME Annual Meeting Seattle, WA. 2012, pp. 248–252.

25. Xu G., Luxbacher K. D., Ragab S., Schafrik S. Development of a remote analysis method for underground ventilation systems using tracer gas and CFD in a simplified laboratory apparatus. Tunnelling Underground Space Technology. 2012, no. 33, pp. 1–11.

26. Xu G., Jong E. C., Luxbacher K. D., Ragab S. A., Karmis M. E. Remote characterization of ventilation systems using tracer gas and CFD in an underground mine. Safety Science. 2015, vol. 74, pp. 140—149.

27. Timko R. J., Thimons E. D. Sulfur hexafluoride as a mine ventilation research tool — recent field applications. U.S. Bureau of Mines, Washington, DC. 1982. 15 p.

28. Konduri I. M., McPherson M. J., Topuz E. Experimental and numerical modeling of jet fans for auxiliary ventilation in mines. Proceeding 6th International Mine Ventilation Symposium, Pittsburgh, PA, USA. 1997, pp. 505–510.

29. Krog R. B., Schatzel S. J., Dougherty H. N. Airflow distribution patterns at a longwall mine depicted by CFD analysis and calibrated by a tracer gas field study. SME Annual Meeting, Denver, CO. 2011, pp. 384–389.

30. Post F. H., T. van Walsum. Fluid flow visualization. Focus on Scientific Visualization. 1993, no. 40, pp. 1–37.

31. Ndenguma D. D. Computational fluid dynamics model for controlling dust and methane in underground coalmine: Dissertation (MSc), University of Pretoria, 2010, 212 p.

32. Wala A., Turner D., Jacob J. Experimental study of mine face ventilation system for validation of numerical models. Proceeding 9th North American/U.S. Mine Ventilation Symposium, Kingston, Canada. 2002, pp. 191–196.

33. Puchkov L. A., Kaledina N. O., Kobylkin S. S. Systemic approach to reducing methane explosion hazard in coal mines. Eurasian Mining. 2015, no. 2, pp. 3—6.

34. Levin L. Yu., Zaitsev A. V., Kolesov E. V., Butakov S. V. Assessment of danger to use freon machines in the underground air conditioning systems. Occupational Safety in Industry. 2017, no. 8, pp. 28—32. [In Russ]. DOI:10.24000/0409-2961-2017-8-28-32.

35. Kolesov E. V., Kazakov B. P. Ventilation efficiency of dead-end development headings after blasting operations. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2020, vol. 331, no. 7, pp. 15—23. [In Russ].

36. Kaledina N. O., Kobylkin S. S., Kobylkin A. S. The calculation method to ensure safe parameters of ventilation conditions of goaf in coal mines. Eurasian Mining. 2016, no. 1, pp. 41—44.

37. Kaledina N. O., Kobylkin S. S. Ventilation of blind roadways in coal mines: Problems and solutions. Eurasian Mining. 2015, no. 2, pp. 26—30.

38. Kaledina N.O., Kobylkin S.S. Ventiolation of dead-end headings in coal mines with high gas content. Gornyi Zhurnal. 2014, no. 12, pp. 99—103. [In Russ].

39. Wala A. M., Vytla S., Taylor C. D., Huang G. Mine face ventilation: a comparison of CFD results against benchmark experiments for the CFD code validation. Minerals Engineering. 2007, no. 59, pp. 49–55.

40. Jade R. K., Sastry B. S. An experimental and numerical study of two-way splits and junctions in mine airways. 12th North American/U.S. Mine Ventilation Symposium, Reno, NV, USA. 2008, pp. 293–298.

41. Pavlov S. A. About changes in aerodynamic resistance of mine ventilation network when reversing the air flow. Mining sciences: fundamental and applied issues. 2019, vol. 6, no. 2, pp. 207—211. [In Russ].

42. Nguyen V.-D., Heo W.-H., Kubuya R., Lee C.-W. Pressurization ventilation technique for controlling gas leakage and dispersion at backfilled working faces in large-opening underground mines: CFD analysis and experimental tests. Sustainability. 2019, vol. 11, no. 12, article 3313.

43. Feroze T. An initial investigation of room and pillar ventilation using CFD. 24th international mining congress and exhibition of Turkey, Antalya, Turkey. 2015, pp. 1—8.

44. Meyer C. F. The effect of last through road air velocities on unventilated headings. Project CC8E10, COMRO. 1989. 15 p.

45. Park J., Jo Y., Park G. Flow characteristics of fresh air discharged from a ventilation duct for mine ventilation. Journal of Mechanical Science and Technology. 2018, vol. 32, no. 3, pp. 1187–1194.

46. Tutak M., Brodny J., Navickas K. Studying the impact of the location of air-duct lines on methane distribution and concentration in dog headings. Acta Montanistica Slovaca. 2019, vol. 24, no. 4, pp. 285—295.

47. Tutak M., Brodny J. Analysis of the effects of the position of the air duct supplying fresh air to the working face of the mined dog heading on methane concentration levels. IOP Conference Series: Earth and Environmental Science. 2019, vol. 362, article 012036.

48. Park J., Park S., Lee D.-K. CFD modeling of ventilation ducts for improvement of air quality in closed mines. Geosystem Engineering. 2016, vol. 19, no. 4, pp. 177–187.

49. Zhang X., Zhang Y., Tien J. C. The efficiency study of the push-pull ventilation system in underground mine. Underground Coal Operators Conference, Wollongong, NSW, Australia. 2011, pp. 225—230.

50. Adjiski V., Mirakovski D., Despodov Z., Mijalkovski S. Method for determining the air change effectiveness of the auxiliary forcing ventilation system in underground mines using CFD software. Mining Science. 2018, vol. 25, pp. 175–192.

51. Liu H., Mao S., Li M. A case study of an optimized intermittent ventilation strategy based on CFD modeling and the concept of FCT. Energies. 2019, vol. 12, no. 4, article 721.

52. Kurnia J. C., Sasmito A. P., Wong W. Y., Mujumdar A. S. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines. Science of the Total Environment. 2014, vol. 481, pp. 317–334.

53. Wang W., Zhang C., Yang W., Xu H., Li S., Li C., Ma H., Qi G. In situ measurements and CFD numerical simulations of thermal environment in blind headings of underground mines. Processes. 2019, vol. 7, no. 5, article 313.

54. Kurnia J. C., Sasmito A. P., Mujumdar A. S. Dust dispersion and management in underground mining faces. International Journal of Mining Science and Technology. 2014, vol. 24, no. 1, pp. 39–44.

55. Feroze T., Genc B. A CFD model to evaluate variables of the line brattice ventilation system in an empty heading. Journal of the Southern African Institute of Mining and Metallurgy. 2017, vol. 117, no. 2, pp. 97—108.

56. Feroze T., Genc B. Evaluation of line brattice length in an empty heading to improve air flow rate at the face using CFD. International Journal of Mining Science and Technology. 2017, vol. 27, no. 2, pp. 253–259.

57. Feroze T., Genc B. Estimating the effects of line brattice ventilation system variables in an empty heading in room and pillar mining using CFD. Journal of the Southern African Institute of Mining and Metallurgy. 2016, vol. 116, no. 12, pp. 1143—1152.

58. Hasheminasab F., Bagherpour R., Aminossadati S. M. Numerical simulation of methane distribution in development zones of underground coal mines equipped with auxiliary ventilation. Tunnelling and Underground Space Technology. 2019, vol. 89, pp. 68–77.

59. Ray R. E., Gilbey M. J., Kumar P. The application of vertically-mounted jet fans in ventilation shafts for a rail overbuild. 12th U.S./North American Mine Ventilation Symposium, Reno, NV. 2008, pp. 415–424.

60. Hurtado J. P., Acuña E. I. CFD analysis of 58 Adit main fans parallel installation for the 2015–2019 underground developments of the new level mine project. Applied Thermal Engineering. 2015, vol. 90, pp. 1109–1118.

61. Maltsev S. V., Kazakov B. P., Isaevich A. G., Semin M. A. Air exchange dynamics in the system of large cross-section blind roadways. MIAB. Mining Inf. Anal. Bull. 2020, no. 2, pp. 46—57. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-46-57.

62. Panigrahi D. C., Mishra D. P. CFD simulations for the selection of an appropriate blade profile for improving energy efficiency in axial flow mine ventilation fans. Journal of Sustainable Mining. 2014, vol. 13, no. 1, pp. 15—21.

63. Drwięga A., Szelka M., Turewicz A. Improvement of auxiliary ventilation efficiency in underground workings. IOP Conference Series: Earth and Environmental Science. 2019, vol. 261, article 012007.

64. Kaledina N. O., Kobylkin S. S., Kobylkin A. S. The calculation method to ensure safe parameters of ventilation conditions of goaf in coal mines. Eurasian Mining. 2016, no. 1, pp. 41—44.

65. Esterhuizen G., Karacan C. A methodology for determining gob permeability distributions and its application to reservoir modeling of coal mine longwalls. SME Annual Meeting, Denver, CO. 2007.

66. Yuan L., Smith A. C., Brune J. F. Computational fluid dynamics study on ventilation flow paths in longwall gobs. 11th U.S./North American Mine Ventilation Symposium. State College, PA. 2006, pp. 591–598.

67. Tanguturi K., Balusu R. CFD modeling of methane gas distribution and control strategies in a gassy coal mine. Journal of Computational Multiphase Flows. 2014, no. 6, pp. 65–77.

68. Lolon S. A., Brune J. F., Bogin G. E., Grubb J. W., Saki S. A., Juganda A. Computational fluid dynamics simulation on the longwall gob breathing. International Journal of Mining Science and Technology. 2017, vol. 27, no. 2, pp. 185–189.

69. Ren T., Wang Z., Liang Y., Zhang J. Numerical investigation of CO2 fringe behaviour on a longwall face and its control. International Journal of Coal Geology. 2018, vol. 186, pp. 80–96.

70. Saki S. A., Brune J. F., Bogin Jr. G. E., Grubb J. W., Emad M. Z., Gilmore R. C. CFD study of the effect of face ventilation on CH4 in returns and explosive gas zones in progressively sealed longwall gobs. Journal of the Southern African Institute of Mining and Metallurgy. 2017, vol. 117, no. 3, pp. 257—262.

71. Brodny J., Tutak M. Forecasting the distribution of methane concentration levels in mine headings by means of model-based tests and in-situ measurements. Archives of Control Sciences. 2019, vol. 29 (LXV), no. 1, pp. 25–39.

72. Mishra D. P., Kumar P., Panigrahi D. C. Dispersion of methane in tailgate of a retreating longwall mine: a computational fluid dynamics study. Environmental Earth Sciences. 2016, vol. 75, no. 6, pp. 1—10.

73. Kumar P., Mishra D. P., Panigrahi D. C., Sahu P. Numerical studies of ventilation effect on methane layering behaviour in underground coal mines. Current science. 2017, vol. 112, no. 9, pp. 1873—1881.

74. Wala A. M., Vytla S., Huang G., Taylor C. D. Study on the effects of scrubber operation on the face ventilation. 12th North American/U.S. Mine Ventilation Symposium, Reno, NV, USA. 2008, pp. 281—286.

75. Trevits M. A., Yuan L., Teacoach K., Valoski M. P., Urosek J. E. Understanding mine fires by determining the characteristics of deep-seated fires. NIOSH Document, Denver, CO, USA, preprint 2009, pp. 09—150.

76. Edwards J. C., Franks R. A., Friel G. F., Yuan L. Experimental and modeling investigation of the effect of ventilation on smoke rollback in a mine entry. Mining, Metallurgy & Exploration. 2006, vol. 58, pp. 53–58.

77. Luchian S. F., Bendelius A. G. West Virginia memorial tunnel fire ventilation test program. International Conference on Fires in Tunnels. Boston, MA. 1994.

78. Kmecová M., Krajčík M., Straková Z. Designing Jet Fan Ventilation for an Underground Car Park by CFD Simulations. Periodica Polytechnica Mechanical Engineering. 2018, vol. 63, no. 1, pp. 39–43.

79. Edwards J. C., Hwang C. C. CFD modeling of fire spread along combustibles in a mine entry. SME Annual Meeting Littleton, CO, preprint 2006, pp. 06–027.

80. Hansen R. Modelling temperature distributions and flow conditions of fires in an underground mine drift. Geosystem Engineering. 2018, pp. 1–16.

81. Edwards J. C., Hwang C. C. CFD analysis of mine fire smoke spread and reverse flow conditions. 8th U.S. Mine Ventilation Symposium, NIOSH Document, Rolla, MO, USA. 1999. pp. 417–422.

82. Hwang C. C., Edwards J. C. CFD modeling of smoke reversal. Proceeding International Conference Eng. Fire Prot. Des. NIOSH Document, Bethesda, MD. 2001, pp. 376–387.

83. Yuan L., Smith A. C. Computational fluid dynamics modeling of spontaneous heating in longwall gob areas. SME Annual Meeting, Denver, CO, Preprint. 2007, pp. 07–101.

84. Yuan L., Smith A. C. Modeling the effect of barometric pressure changes on spontaneous heating in bleederless longwall panels. SME Annual Meeting, Denver, CO, Preprint 2007, pp. 07–101.

85. Yuan L., Smith A. C. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas. Fuel. 2008, vol. 87, pp. 3409–3419.

86. Yuan L., Smith A. C. Effects of ventilation and gob characteristics on spontaneous heating in longwall gob areas. 12th US/North American Mine Ventilation Symposium, Reno, NV. 2008, pp. 141–147.

87. Brodny J., Tutak M. Determination of the zone with a particularly high risk of endogenous fires in the goaves of a longwall with caving. Journal of Applied Fluid Mechanics. 2018, vol. 11, no. 3, pp. 545–553.

88. Kobylkin S.S., Kobylkin A.S. 3D modeling in engineering design of mine rescue work tactics. Gornyi Zhurnal. 2018, no. 5, pp. 82—85. [In Russ].

89. Fainburg G. Z., Isaevich A. G. Analysis of microcirculation flows between microzones in face areas of blind shear stopes in potash mines with different ventilation methods. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 58—73. [In Russ]. DOI: 10.25018/0236-1493-2020-30-58-73.

90. Vasenin I. M., Shrager E. R., Kraynov A. Yu., Paleev D. Yu., Lukashev O. Yu., Kosterenko V. N. Mathematical simulation of non-stationary ventilation processes of coal mining. Computer Research and Modeling. 2011, vol. 3, no. 2, pp. 155—163. [In Russ].

91. Kurnia J., Sasmito A. P., Mujumdar A. Simulation of a novel intermittent ventilation system for underground mines. Tunnelling and Underground Space Technology. 2014, vol. 42, pp. 206—215.

92. Sasmito A., Birgersson E., Ly H., Mujumdar A. Some approaches to improve ventilation system in underground coal mines environment . A computational fluid dynamic study. Tunnelling and Underground Space Technology. 2013, vol. 34, pp. 82—95.

93. Zheng Y, Reed W. R., Shahan M. R., Rider J. P. Evaluation of roof bolter canopy air curtain effects on airflow and dust dispersion in an entry using blowing curtain ventilation. Mining, Metallurgy & Exploration. 2019, vol. 36, no. 9, pp. 1—12.

94. Zheng Y., Tien J. DPM dispersion study using CFD for underground metal/nonmetal mines. 12th U.S. / North American Mine Ventilation Symposium. Wallace (ed), 2008, pp. 487—494.

95. Zheng Y., Lan H., Thiruvengadam M., Tien J. C., Li Y. Effect of single dead end entry inclination on DPM plume dispersion. International Journal of Mining Science and Technology. 2017, vol. 27, no. 3, pp. 401—406.

96. Zhang Q., Zhou G., Qian X., Yuan M., Sun Y., Wang D. Diffuse pollution characteristics of respirable dust in fully mechanized mining face under various velocities based on CFD investigation. Journal of Cleaner Production. 2018, vol. 184, pp. 239—250.

97. Cai P., Nie W., Hua Y., Wei W., Jin H. Diffusion and pollution of multi-source dusts in a fully mechanized coal face. Process Safety and Environmental Protection. 2018, vol. 118, pp. 93—105.

98. Ren T., Wang Z., Zhang J. Improved dust management at a longwall top coal caving (LTCC) face — A CFD modelling approach. Advanced Powder Technology. 2018, vol. 29, no. 10, pp. 2368–2379.

99. Zhou Z., Hu P., Qi C., Niu T., Li M., Tian L. The influence of ventilation arrangement on the mechanism of dust distribution in woxi pithead. Shock and Vibration, vol. 2018, article 8928120. DOI: 10.1155/2018/8928120.

100. Toraсo J., Torno S., Menendez M., Gent M. Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour. Tunnelling Underground Space Technology. 2011, vol. 26, pp. 201–210.

101. Yueze L., Akhtar S., Sasmito A. P., Kurnia J. C. Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face. International Journal of Mining Science and Technology. 2017, vol. 27, no. 4, pp. 657–662.

102. Li Y., Wang P., Liu R., Gao R. Optimization of structural parameters and installation position of the wall-mounted air cylinder in the fully mechanized excavation face based on CFD and orthogonal design. Process Safety and Environmental Protection. 2019, vol. 130, pp. 344—358.

103. Geng F., Luo G., Wang Y., Peng Z., Hu S., Zhang T., Chai H. Dust dispersion in a coal roadway driven by a hybrid ventilation system: a numerical study. Process Safety and Environment Protection. 2017, vol. 113, pp. 1—46.

104. Liu H., Wu X., Mao S, Li M, Yue J. A time varying ventilation and dust control strategy based on the temporospatial characteristics of dust dispersion. Minerals. 2017, vol. 7, no. 4, pp. 59.

105. Chang P., Xu G., Zhou F., Mullins B., Abishek S., Chalmers D. Minimizing DPM pollution in an underground mine by optimizing auxiliary ventilation systems using CFD. Tunnelling and Underground Space Technology. 2019, vol. 87, pp. 112–121.

106. Xu G., Chang P., Mullins B., Zhou F., Hu S. Numerical study of diesel particulate matter distribution in an underground mine isolated zone. Powder Technology. 2018, vol. 339, pp. 947—957.

107. Wang Y., Luo G., Geng F., Li Y., Li Y. Numerical study on dust movement and dust distribution for hybrid ventilation system in a laneway of coal mine. Journal of Loss Prevention in the Process Industries. 2015, vol. 36, pp. 146 157.

108. Skjold T., Eckhoff R. K., Arntzen B. J., Lebecki K., Dyduch Z., Klemens R., Zydak P. Simplified modelling of explosion propagation by dust lifting in coal mines. Proceeding 5th International Seminar on Fire and Explosion Hazards. Edinburgh, UK. 2007, pp. 23–27.

109. Proud D., Collecutt G., Humphreys D. Computational fluid dynamics modelling of coal dust explosions and suppression systems. 3rd Australian Mine Ventilation Conference, The Australasian Institute of Mining and Metallurgy, Sydney, Australia. 2015, pp. 309–313.

110. Collecutt G., Humphreys D., Proud D. CFD simulation of underground coal dust explosions and active explosion barriers. 7th International Conference on CFD in the Minerals and Process Industries. CSIRO Australia, Melbourne, Australia. 2009, pp. 1–6.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.