Approaches to creation of data bases from lab-scale testing of rocks: Review

Lab-scale rock testing includes processing of a huge variety of information. The increase in the number of tests, measured properties and other related information requires advanced approaches to such data processing and storage in the context of both data model architecture and modern tools of data base control. This study focuses on the current situation in the area of development of a data base and processing tools in the Earth’s sciences. The data bases on rock samples in the Earth’s sciences can be conventionally divided into two types: geological information and lab-scale test data. The literature review shows that today there are only a few publications on the development of data bases from tests of rock samples and they mainly address specific and narrow-range solutions (for instance, a web-interface on acquisition of data on mineral samples). The features of these specific solutions are discussed in the article.

Keywords: rocks, data base, Big Data, lab-scale experiments, destructive tests, earthquake physics, literature review.
For citation:

Krayushkin D. V., Kaznacheev P. A., Beloborodov D. E., Ponomarev A. V., Indakov G. S. Approaches to creation of data bases from lab-scale testing of rocks: Review. MIAB. Mining Inf. Anal. Bull. 2025;(4):152-169. [In Russ]. DOI: 10.25018/0236_1493_2025_4_0_152.

Acknowledgements:

The study was carried out within the framework of the state contract with the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. The research used equipment of the Share Use Center for Petrophysics, Geomechanics and Paleomagnetism at the Schmidt Institute of Physics of the Earth, RAS.

Issue number: 4
Year: 2025
Page number: 152-169
ISBN: 0236-1493
UDK: 004.65:550.8:552.08:620.1
DOI: 10.25018/0236_1493_2025_4_0_152
Article receipt date: 09.07.2024
Date of review receipt: 24.12.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2025
About authors:

D.V. Krayushkin1, Graduate Student, HSE University, 109028, Moscow, Russia; Junior Researcher, e-mail: KrayushkinDenV@yandex.ru, ORCID ID: 0009-0004-5474-1397,
P.A. Kaznacheev1, Cand. Sci. (Eng.), Leading Researcher, e-mail: p_a_k@mail.ru, ORCID ID: 0000-0002-9503-0047,
D.E. Beloborodov1, Cand. Sci. (Geol. Mineral.), Senior Researcher, e-mail: beloborodov@ifz.ru, ORCID ID: 0000-0003-1917-7845,
A.V. Ponomarev1, Dr. Sci. (Phys. Mathem.), Chief Researcher, e-mail: avp@ifz.ru, ORCID ID: 0000-0002-8737-0017,
G.S. Indakov1, Graduate Student, Lomonosov Moscow State University, 119991, Moscow, Russia; Research Engineer, e-mail: indakov.gs16@physics.msu.ru, ORCID ID: 0009-0009-7564-9852,
1 Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 123242, Moscow, Russia.

 

For contacts:

D.V. Krayushkin, e-mail: KrayushkinDenV@yandex.ru.

Bibliography:

1. Arrowsmith S. J., Trugman D. T., MacCarthy J., Bergen K. J., Lumley D., Magnani M. B. Big data seismology. Reviews of Geophysics. 2022, vol. 60, no. 2, article e2021RG000769. DOI: 10.1029/ 2021rg000769.

2. Hariri R. H., Fredericks E. M., Bowers K. M. Uncertainty in big data analytics: survey, opportunities, and challenges. Journal of Big Data. 2019, vol. 6, pp. 1—16. DOI: 10.1186/s40537-019-0206-3.

3. Poudel M., Sarode R. P., Watanobe Y., Mozgovoy M., Bhalla S. A survey of big data archives in timedomain astronomy. Applied Sciences. 2022, vol. 12, no. 12, article 6202. DOI: 10.3390/app12126202.

4. Gridin G. A., Ostapchuk A. A., Pavlov D. V., Grigoriev A. V., Ustinov S. A. Digital catalog of rock samples from the Primorsky Fault. RU 2023621889 Database, 07.06.2023. [In Russ].

5. Korost S. R., Prikhodko E. A. Database of X-ray tomographic studies of full-size rock samples. RU 2023624197 Database, 27.11.2023. [In Russ].

6. Dudetskiy V. N. Organizatsiya baz geologicheskikh dannykh. 2-e izd. [Organization of geological databases. 2nd ed.], Moscow, Flinta, 2015, 36 p.

7. Konstantinov K. M., Zabelin A. V., Konstantinov I. K., Yakovlev A. A., Kirguev A. A. Development of the petromagnetic database of Eastern Siberia. Geologo-geofizicheskaya sreda i raznoobraznye proyavleniya seysmichnosti: materialy Mezhdunarodnoy konferentsii [Geological and geophysical environment and various manifestations of seismicity: proceedings of the International Conference], Neryungri, 2015, pp. 87—94. [In Russ].

8. Gizatullin R. Z., Anishchik V. V. Geological databases, as the basis for operation in geological direction. PROneft. Professionally about Oil. 2017, no. 3(5), pp. 76—79. [In Russ].

9. Novikov B. A., Gorshkova E. A., Grafeeva N. G. Osnovy tekhnologiy baz dannykh. 2-e izd. [Fundamentals of database technologies, 2nd ed.], Moscow, DMK Press, 2020.

10. Yager D. B., Hofstra A. H., Fifarek K., Webbers A. Supplemental material: Development of an igneous rock database with geologic functions: Application to Neogene bimodal igneous rocks and mineral resources in the Great Basin. Geosphere. 2010, vol. 6, pp. 691—730. DOI: 10.1130/GES00516.1.

11. McCormick T., Heaven R. E. The British geological survey rock classification scheme, its representation as linked data, and a comparison with some other lithology vocabularie. Applied Computing and Geosciences. 2023, vol. 20, article 100140. DOI: 10.1016/j.acags.2023.100140.

12. Hsu L., Mayorga E., Horsburgh J. S., Carter M., Lehnert K. A., Brantley S. L. Enhancing interoperability and capabilities of Earth science data using the Observations Data Model 2 (ODM2). Data Science Journal. 2017, vol. 16, no. 4, pp. 1—16. DOI: 10.5334/DSJ-2017-004.

13. Lehnert K., Su Y., Langmuir C. H., Sarbas B., Nohl U. Aglobal geochemical database structure for rocks. Geochemistry, Geophysics, Geosystems. 2000, vol. 1, article 1012. DOI: 10.1029/1999GC000026.

14. Ma X., Ralph J. P., Zhang J., Que X., Prabhu A., Morrison S. M., Hazen R. M., Wyborn L., Lehnert K. A. OpenMindat: Open and FAIR mineralogy data from the Mindat database. Geoscience Data Journal. 2023, vol. 11, no. 1, pp. 94—104. DOI: 10.1002/gdj3.204.

15. Liu Z., Li D., Liu Y., Yang B., Zhang Z. Prediction of uniaxial compressive strength of rock based on lithology using stacking models. Rock Mechanics Bulletin. 2023, vol. 2, no. 4. DOI: 10.1016/j. rockmb.2023.100081.

16. Orlov D. M., Koroteev D. A., Muravleva E. A. Patent RU 2725506C, 02.07.2020. [In Russ].

17. Kondakova V. N., Ivanov P. V., Pospehov G. B. Database of physical and mechanical properties of technogenic soils. RU 2021622701 Database, 26.11.2021. [In Russ].

18. Panishev S. V., Mironov Ya. V. A program for calculating the parameters of transport-free technology for internal dumping of frozen overburden rocks. RU 2023614137 Computer program, 27.02.2023. [In Russ].

19. Wang Y., Liu J., He X., Wang B. Design and realization of rock salt gas storage database management system based on SQL Server. Petroleum. 2017, vol. 4, no. 4, pp. 466—472. DOI: 10.1016/J. PETLM.2017.10.001.

20. Oppikofer T., Nordahl B., Bunkholt H. S., Nicolaisen M., Jarna A., Iversen S., Hermanns R. L., Böhme M., Molina F. X. Y. Database and online map service on unstable rock slopes in Norway — From data perpetuation to public information. Geomorphology. 2015, vol. 249, pp. 69—81. DOI: 10.1016/J. GEOMORPH.2015.08.005.

21. Ficker T., Martisek D. Database 3D surfaces for evaluation of Joint Rock Coefficients. Procedia Engineering. 2016, vol. 161, pp. 1361—1366. DOI: 10.1016/J.PROENG.2016.08.656.

22. Zhao L., Zhang S., Huang D., Wang X. A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate. Construction and Building Materials. 2020, vol. 247, article 117906. DOI: 10.1016/j.conbuildmat.2019.117906.

23. Connolly T., Begg C. Database Systems. A practical approach to design, implementation, and management. 3rd ed. Boston: Addison-Wesley, 2001, 1236 р.

24. Grolinger K., Higashino W. A., Tiwari A., Capretz M. A. Data management in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud Computing: Advances, Systems and Applications. 2013, vol. 2, pp. 1—24. DOI: 10.1186/2192-113X-2-22.

25. Date C. J. Database design and relational theory: Normal forms and all that jazz. 2012. DOI: 10.1007/978-1-4842-5540-7.

26. Ma X. Knowledge graph construction and application in geosciences. A review. Computers & Geosciences. 2022, vol. 161, article 105082. DOI: 10.1016/j.cageo.2022.105082.

27. Wyborn L. A. I., Cox S. J. D., Klump J., Lehnert K. A. A modular approach to developing interdisciplinary, interoperable standards for geochemical data based on the Semantic Sensor Network (SSN) Ontology. 2018. DOI: 10.13140/RG.2.2.24898.22722.

28. Davis W., Hunt C. R. Knowledge graphs for seismic data and metadata. Applied Computing and Geosciences. 2024, vol. 21, article 100151. DOI: 10.1016/j.acags.2023.100151.

29. Catsoulis S., Singh J.-S., Narayanan C., Lakehal D. Integrating supervised learning and applied computational multi-fluid dynamics. International Journal of Multiphase Flow. 2022, vol. 157, no. 15, article 104221.

30. Zhao M., Xiao Z., Chen S., Fang L. DiTing: A large-scale Chinese seismic benchmark dataset for artificial intelligence in seismology. Earthquake Science. 2023, vol. 25, no. 2, pp. 84—94. DOI: 10.1016/j.eqs.2022.01.022.

31. Veselovskiy R. V., Dubinya N. V., Ponomarev A. V., Fokin I. V., Patonin A. V., Pasenko A. M., Fetisova A. M., Matveev M. A., Afinogenova N. A., Rud'ko D. V., Chistyakova A. V. Shared research facilities «Petrophysics, geomechanics and paleomagnetism» of the Schmidt institute of physics of the Earth RAS. Geodynamics & Tectonophysics. 2022, vol. 13, no. 2. [In Russ]. DOI: 10.5800/GT-2022-13-2-0579.

32. Codd E. F. The relational model for database management, Version 2, Addison-Wesley; 1990, 567 p.

33. Muruzábal M. M., Geyer A., Aulinas M., Albert H., Vilà M., Micheo F., Bolós X., Pedrazzi D., Gisbert G., Planagumà L. CatVolc. A new database of geochemical and geochronological data of volcanic-related materials from the Catalan Volcanic Zone (Spain). Journal of Volcanology and Geothermal Research. 2024, vol. 446, article 107998. DOI: 10.1016/j.jvolgeores.2023.107998.

34. Liolios P., Exadaktylos G. A relational rock mechanics database scheme with a hierarchical structure. Computers and Geosciences. 2011, vol. 37, pp. 1192—1204. DOI: 10.1016/j.cageo.2011.02.014.

35. Bär K., Reinsch T., Bott J. The PetroPhysical Property Database (P3) — a global compilation of lab-measured rock properties. Earth System Science Data. 2020, vol. 12, pp. 2485—2515. DOI: 10. 5194/essd-12-2485-2020, 2020.

36. Weydt L. M., Ramírez-Guzmán Á. A., Pola A., Lepillier B., Kummerow J., Mandrone G., Comina C., Deb P., Norini G., Gonzalez-Partida E., Avellán D. R., Macías J. L., Bär K., Sass I. Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico). Earth System Science Data. 2021, vol. 13, pp. 571—598. DOI: 10.5194/essd-13-571-2021.

37. Philippe D., Lassin A., Piantone P., Azaroual M., Jacquemet N., Fabbri A., Gaucher E. C. Thermoddem. A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry. 2012, vol. 27, no. 10, pp. 2107—2116. DOI: 10.1016/J.APGEOCHEM.2012.06.002.

38. Horsburgh J., Audfenkampe A., Mayorga E., Lehnert K., Hsu L., Song L., Jones A., Damiano S., Tarboton D., Valentine D., Zaslavsky I., Whitenack T. Observations Data Model 2. A community information model for spatially discrete Earth observations. Environmental Modelling, Software. 2016, vol. 79, pp. 55—74. DOI: 10.1016/j.envsoft.2016.01.010.

39. Kallas L., Klöcking M., Sturm A., Sarbas B., Möller-McNett S., Geestmann M., Pestov P., Kurzawe D., Willbold M., Wörner G. Advancing FAIR Principles in Geochemistry: The GEOROC Database and DIGIS Initiative. Sektionstreffen Petrologie/Petrophysik und Geochemie, Karlsruhe. 2024. DMG. DOI: 10.5281/zenodo.11527479.

40. Klöcking M., Sturm A. DIGIS Data Model for GEOROC 2.0 (1.0.0). Zenodo. Software. 2024. DOI: 10.5281/zenodo.10468217.

41. Valitov M. G., Kharchenko T. A., Terekhov E. P. Physical properties of rocks of the Kuril Island arc system, Sakhalin Island and some morphostructures of the Okhotsk Sea. RU 2022622201 Database, 06.09.2022. [In Russ].

42. Rochev V. F. Laboratory research data on the disintegration of frozen soils under the simultaneous influence of an aquatic environment and a magnetic field at placer gold deposits in the eastern part of the Amur Region. RU 2020621347 Database, 04.08.2020. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.