Modern methods of data collection for structural damage assessment in rock mass: Review

Structural damage of hard rock mass is one of the key factors of the rock mass strength and behavior, which places inclusive demands on the quality and reliability of initial information on the rock mass structure. As technologies and mathematical apparatus are being advanced, new methods of structural data collection enjoy emergence and persistent improvement, with emphasis on maximal automation, and push out the conventional approaches of rock exposure and core description. This article reviews censoriously the existing methods of source data collection, with estimation of their applicability and efficiency in structural damage characteristic of rock mass. Furthermore, the capabilities and limitations of the data collection methods recommended by the International Society for Rock Mechanics (ISRM) are discussed. The applicability of the methods is analyzed in terms of safety, time and money spent, subjectivity and repeatability of results. Each method has benefits and disbenefits, and a complete and precise description of structural damage in rock mass requires complexing of selected techniques. At early design stages, the high quality and operational efficiency of data acquisition is provided by a set of televiewer logging and non-oriented core description. For operating mines, the most productive and reliable package includes any borehole technique in integration with a method of exposed surface mapping.

Keywords: structural damage of rock mass, structural data gathering, structural damage description, oriented core description, optical televiewer, digital photogrammetry, laser scanning.
For citation:

Serebriakov E. V., Gladkov A. S., Gapfarov T. D. Modern methods of data collection for structural damage assessment in rock mass: Review. MIAB. Mining Inf. Anal. Bull. 2023;(9):160-177. [In Russ]. DOI: 10.25018/0236_1493_2023_9_0_160.

Issue number: 9
Year: 2023
Page number: 160-177
ISBN: 0236-1493
UDK: 624.121+622.02+622.015/.016
DOI: 10.25018/0236_1493_2023_9_0_160
Article receipt date: 19.12.2022
Date of review receipt: 19.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

E.V. Serebriakov1, Cand. Sci. (Geol. Mineral.), Junior Researcher, e-mail:, ORCID ID: 0000-0001-7280-7784,
A.S. Gladkov1, Cand. Sci. (Geol. Mineral.), Head of Laboratory, e-mail:, ORCID ID: 0000-0001-7744-8979,
T.D. Gapfarof 1, Senior Laboratory Assistant, e-mail:,
1 Institute of the Earth’s Crust, Siberian Branch of Russian Academy of Siences, Irkutsk, 664033, Russia.


For contacts:

E.V. Serebriakov, e-mail:


1. Ignatenko I. M., Janickij E. B., Dunaev V. A., Kabelko S. G. Cracking of the rock mass in the open pit of the Zhelezny mine of Kovdorsky GOK JSC. Gornyi Zhurnal. 2019, no. 10, pp. 11—15. [In Russ]. DOI: 10.17580/gzh.2019.10.01.

2. Serebryakov E. V., Gladkov A. S. Geological and structural characteristics of deep-level rock mass of the Udachnaya pipe deposit. Journal of Mining Institute. 2021, vol. 250, pp. 512—525. [In Russ]. DOI: 10.31897/PMI.2021.4.4.

3. Goodman R. E. Engineering geology. Rock in Engineering Construction. John Wiley & Sons. New York, 1993, 385 p.

4. Bieniawski Z. T. Rock mechanics design in mining and tunneling. Rotterdam, 1984, 272 p.

5. Barton N. R. Suggested methods for the quantitative description of discontinuities in rock masses: International Society for Rock Mechanics. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1978, vol. 15, no. 6, pp. 319—368.

6. Hudson J. A. Rock mechanics principles in engineering practice. Construction Industry Research and Information Association (CIRIA). Butterworths, London, Boston, 1989, 79 p.

7. Palmstrom A. Measurements of and correlations between block size and rock quality designation (RQD). Tunnels and Underground Space Technology. 2005, vol. 20, no. 4, pp. 362—377. DOI: 10.1016/j.tust.2005.01.005.

8. Brown E. T. Block Caving Geomechanics. Julius Kruttschnitt Mineral Research Centre. The University of Queensland, 2002, 515 p.

9. Piteau D. R. Characterizing and extrapolating rock joint properties in engineering practice. Rock Mechanics. 1973, vol. 2, pp. 5—31.

10. Korchak S. A., Abaturova I. V., Savintsev I. A., Storozhenko L. A. Rock mass quality assessment to reveal potentially hazardous areas in open pit mine design. MIAB. Mining Inf. Anal. Bull. 2022, no. 9, pp. 87—98. [In Russ]. DOI: 10.25018/0236_1493_2022_9_0_87.

11. Read J., Stacey P. Guidelines for open pit slope design. CRC Press, 2009, 510 p.

12. Terzaghi R. Sources of error in joint surveys. Géotechnique. 1965, vol. 15, pp. 287—304.

13. McKenna G. T. C., Roberts-Kelly S. L. Televiewer imaging of boreholes; benefits and considerations for interpretation in the absence of physical rock core. Australian Geomechanics Society: Collected Papers. Sydney, Australia. 2016, pp. 291—296.

14. Li S. J., Feng Xia-Ting, Wang C. Y., Hudson J. A. ISRM Suggested method for rock fractures observations using a borehole digital optical televiewer. Rock Mechanics and Rock Engineering. 2013, vol. 46, pp. 635—644. DOI: 10.1007/s00603-012-0344-9.

15. Peyras L., Rivard P., Breul P., Millet A., Ballivy G. Characterization of rock discontinuity openings using acoustic wave amplitude — Application to a metamorphic rock mass. Engineering Geology. 2015, vol. 193, pp. 402—411. DOI: 10.1016/j.enggeo.2015.05.014.

16. Orehov A. N., Amani Mangua Mark M. Possibilities of geophysical methods for reservoir fracture prediction. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019, vol. 330, no. 6, pp. 198—209. [In Russ]. DOI: 10.18799/24131830/2019/6/2140.

17. Chuzhinov D. N., Rubchevskij Yu.I., Malyh M.Yu., Oseckij A. I., Kolpakov V. B., Simakov A. P. Oriented core and downhole telemetry, experience of application at polymetal facilities. Prospect and protection of mineral resources. 2020, no. 10, pp. 34—39. [In Russ].

18. Bae D. S., Kim K, Koh Y., Kim J. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer. Rock Mechanics and Rock Engineering. 2011, vol. 44, pp. 497—504. DOI: 10.1007/s00603-011-0134-9.

19. Thomas R. D. H., King A. M., Neilsen J. M. Assessing waviness from televiewer for incorporation within defect plane shear strength models. Proceedings of 48-th US Rock Mechanics/Geomechanics Symposium. 2014, pp. 1—9.

20. Barton N., Choubey V. The shear strength of rock joints in theory and practice. Rock Mechanics. 1977, vol. 10, pp. 1—54.

21. Fredrick F. D., Nguyen T., Seymour C., Dempers G. Geotechnical data from optical and acoustic televiewer surveys. The AusIMM Bulletin. Drilling and Blasting. 2014, pp. 62—66.

22. Gwynn X., Brown M. C., Mohr P. J. Combined use of traditional core logging and televiewer imaging for practical geotechnical data collection. Slope Stability. Australian Centre for Geomechanics: Collected Papers. 2013, pp. 1—13.

23. Holcombe R., Coughlin T., Oliver N., Valenta R. Oriented drillcore: measurement, conversion, and qa/qc procedures for structural and exploration geologists. 2017, available at: (accessed 02.12.2022).

24. Dubinya N. V. An overview of wellbore methods of investigating stress state of the upper layers of the earth’s crust. Fizika Zemli. 2019, no. 2, pp. 137—155. [In Russ]. DOI: 10.31857/ S0002-333720192137-155.

25. Zoback M. D., Moos D., Mastin L. Well Bore breakouts and in situ stress. Journal of Geophysical Research. 1985, vol. 90, no. B7, pp. 5523—5530.

26. Zoback M. D., Barton C. A., Brudy M., Castillo D. A., Finkbeiner T., Grollimund B. R., Moos D. B., Peska P., Ward C. D., Wiprut D. J. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences. 2003, vol. 40, no. 7, pp. 1049—1076. DOI: 10.1016/j.ijrmms.2003.07.001.

27. Fowler M. J., Weir F. M. The use of borehole breakout for geotechnical investigation of an open pit mine. Australian Centre for Geomechanics: Collected Papers. 2008. DOI: 10.36487/ ACG_repo/808_61.

28. Di Franco C., Buttazzo G., Coverage path planning for UAVs photogrammetry with energy and resolution constraints. Journal of Intelligent & Robotic Systems. 2016, no. 83, pp. 445—462. DOI: 10.1007/s10846-016-0348-x.

29. Boos I. Yu., Yunakov Yu. L., Patachakov I. V., Grishin A. A. Structural analysis of pit wall rock mass on 3D slope model constructed using a multicopter. MIAB. Mining Inf. Anal. Bull. 2021, no. 12, pp. 19—30. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_19.

30. Herrero M. J. Pérez-Fortesb A. P., Escavy J. I., Insua-Arévalo J. M., De la Horra R., López-Acevedo F., Trigosc L. 3D model generated from UAV photogrammetry and semi-automated rock mass characterization. Computers & Geosciences. 2022, vol. 163, pp. 1—9. DOI: 10.1016/j.cageo.2022.105121.

31. Shekov V. A., Ivanov A. A., Krylova S. A. Digital outcrop model as a modern method of geological environment research: the example of precambrian complexes in Lahdenpohsky district. Transactions of the Karelian research centre of the Russian academy of sciences. 2020, no. 10, pp. 84—98. [In Russ]. DOI: 10.17076/geo1238.

32. Battulwar R., Zare-Naghadehi M., Emami E., Sattarvand J. A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. Journal of Rock Mechanics and Geotechnical Engineering. 2021, vol. 13, no. 4, pp. 920—936. DOI: 10.1016/j.jrmge.2021.01.008.

33. Mineo S., Caliò D., Pappalardo G. UAV-based photogrammetry and infrared thermography applied to rock mass survey for geomechanical purposes. Remote Sensing. 2022, vol. 14, no. 473, pp. 1—19. DOI: 10.3390/rs14030473.

34. Sturzenegger M., Stead D. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology. 2009, vol. 106, no. 3-4, pp. 163—182. DOI: 10.1016/j.enggeo.2009.03.004.

35. Haneberg W. C. Directional roughness profiles from three-dimensional photogrammetric or laser scanner point clouds. Rock Mechanics: Meeting Society's Challenges and Demands. 2007. DOI: 10.1201/NOE0415444019-c13.

36. Han X., Yang S., Zhou F., Wang J., Zhou D. An effective approach for rock mass discontinuity extraction based on terrestrial lidar scanning 3D point clouds. IEEE Access. 2017, vol. 5, pp. 26734—26742. DOI: 10.1109/ACCESS.2017.2771201.

37. Ulusay R. (ed.) The ISRM suggested methods for rock characterization, testing and monitoring: 2007—2014. Springer International Publishing Switzerland, 2015, 293 p. DOI: 10.1007/ 978-3-319-07713-0.

38. Riquelme A., Cano M., Tomás R., Abellán A., Identification of rock slope discontinuity sets from laser scanner and photogrammetric point clouds: a comparative analysis. Procedia Engineering. 2017, vol. 191, pp. 838—845. DOI:DOI: 10.1016/j.proeng.2017.05.251.

39. CloudCompare. 3D point cloud and mesh processing software — open source project. 2022, available at: (accessed 05.12.2022).

40. InnovMetric Software: Your 3D Metrology software partner. 2022, available at: https:// (accessed 05.12.2022).

41. Ewan V. J., West G., Temporal J. Variation in measuring rock joints for tunnelling. Tunnels & Tunnelling. 1983, pp. 15—18.

42. Laubscher D. H. A geomechanics classification system for the rating of rock mass in mine design. Journal of the South African Institute of Mining and Metallurgy. 1990, vol. 90, no. 10, pp. 257—273.

43. Hoek E., Brown E. T. The Hoek—Brown failure criterion and GSI — 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 3, pp. 445—463. DOI: 10.1016/j.jrmge.2018.08.001.

44. Dershowitz W. S., Einstein H. H., Characterising rock joint geometry with joint system models. Rock Mechanics and Rock Engineering. 1988, vol. 21, pp. 21—51.

45. Palmstrom A. Measurement and characterization of rock mass jointing. In-Situ Characterization of rocks. 2001.

46. Obregon C., Mitri H. Probabilistic approach for open pit bench slope stability analysis. A mine case study. International Journal of Mining Science and Technology. 2019, vol. 29, no. 4, pp. 629—640. DOI: 10.1016/j.ijmst.2019.06.017.

47. Li A., Li Y., Wu F., Shao G., Sun Y. Simulation method and application of three-dimensional DFN for rock mass based on Monte-Carlo technique. Applied Sciences. 2022, vol. 12, no. 22, pp. 1—12. DOI: 10.3390/app122211385.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.