Clean coal technologies with carbon capture, utilization and storage in China’s coal industry

The coal sector accounts for 41.14% of the global carbon emission, and the input of China in this percentage in 2022 totals 28.87%. The use of the carbon capture, utilization and storage (CCUS) technologies enable solving environmental problems at enhanced energy efficiency, develop the closed cycle economy and contribute to carbon neutrality in the framework of sustainable development. This article presents the classification and trends of research of the clean coal technologies; offers the comprehensive analysis of the current condition of the clean coal technologies with regard to carbon capture, utilization and storage; undertakes the economic evaluation of the clean coal technology project at a thermal power station using the LCOE model and analyzes the problems connected with the implementation of a CCUS project in China. The results show that China’s projects of fuel-based power generation with integrated gasification of coal (IGCC) are economic if the energy rates are higher than the levelized cost of electricity (LCOE). The main problems connected with the CCIS technology introduction in production of energy using clean coal technologies in China are the high cost of construction and operation of power stations, imperfect legislation and ecological risks. The proposals formulated in the article regarding a potential government stimulus package are suitable for the countries which generate electricity from coal, including Russia.

Keywords: clean coal technologies, carbon capture, utilization and storage (CCUS), energy economics, China’s coal industry, sustainable development, energy transition.
For citation:

Lijuan Zhang, Ponomarenko T. V., Sidorov D. V. Clean coal technologies with carbon capture, utilization and storage in China’s coal industry. MIAB. Mining Inf. Anal. Bull. 2024;(2):105-128. [In Russ]. DOI: 10.25018/0236_1493_2024_2_0_105.

Issue number: 2
Year: 2024
Page number: 105-128
ISBN: 0236-1493
UDK: 621.311
DOI: 10.25018/0236_1493_2024_2_0_105
Article receipt date: 10.11.2023
Date of review receipt: 06.12.2023
Date of the editorial board′s decision on the article′s publishing: 10.01.2024
About authors:

Lijuan Zhang1, Graduate Student, e-mail:, ORCID ID: 0000-0002-3787-3871,
T.V. Ponomarenko1, Dr. Sci. (Econ.), e-mail:, ORCID ID: 0000-0001-5047-2880,
D.V. Sidorov, Dr. Sci. (Eng.), LLC Polygor, Saint-Petersburg, Russia, e-mail:, ORCID ID: 0000-0001-5047-2880,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

Lijuan Zhang, e-mail:


1. Xu Y., Wang K., Pei J. The economics of clean coal power generation with carbon capture and storage technology in China. Clean Technologies and Environmental Policy. 2023, vol. 25, no. 7, pp. 1—19. DOI: 10.1007/s10098-023-02531-1.

2. Zhang B., Wang S., Wang D., Wang Q., Yang X., Tong R. Air quality changes in China 2013— 2020: Effectiveness of clean coal technology policies. Journal of Cleaner Production. 2022, vol. 366, article 132961. DOI: 10.1016/j.jclepro.2022.132961.

3. Wang G., Xu Y., Ren H. Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects. International Journal of Mining Science and Technology. 2019, vol. 29, no. 2, pp. 161—169. DOI: 10.1016/j.ijmst.2018.06.005.

4. Marinina O., Kirsanova N., Nevskaya M. Circular economy models in industry: Developing a conceptual framework. Energies. 2022, vol. 15, no. 24, article 9376. DOI: 10.3390/en15249376.

5. Zhang L., Ponomarenko T. Directions for sustainable development of china’s coal industry in the post-epidemic era. Sustainability. 2023, vol. 15, no. 8, article 6518. DOI: 10.3390/su15086518.

6. Zhao L. T., Liu Z. T., Cheng L. How will China's coal industry develop in the future. A quantitative analysis with policy implications. Energy. 2021, vol. 235, article 121406. DOI: 10.1016/j. energy.2021.121406.

7. Wang X., Du L. Study on carbon capture and storage (CCS) investment decision-making based on real options for China's coal-fired power plants. Journal of Cleaner Production. 2016, vol. 112, pp. 4123—4131. DOI: 10.1016/j.jclepro.2015.07.112.

8. Leyzerovich A. S. Development of China’s coal-fired power plants in the coming years. Power Technology and Engineering. 2021, vol. 55, no. 4, pp. 562—567. DOI: 10.1007/s10749-021-01398-w.

9. Lyu J., Yang H., Ling W., Nie L., Yue G., Li R., Chen Y., Wang S. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler. Frontiers in Energy. 2019, vol. 13, pp. 114—119. DOI: 10.1007/s11708-017-0512-4.

10. Zhang H., Lyu J., Yue G. A review on research and development of CFB combustion technology in China. Powder Technology. 2022, article 118090. DOI: 10.1016/j.powtec.2022.118090.

11. Chyou Y. P., Chiu H. M., Chen P. C., Chien H. Y., Wang T. Coal-derived synthetic natural gas as an alternative energy carrier for application to produce power — comparison of integrated vs. nonintegrated processes. Energy. 2023, vol. 282, article 128958. DOI: 10.1016/

12. Nevskaya M. A., Raikhlin S. M., Vinogradova V. V., Belyaev V. V., Khaikin M. M. A study of factors affecting national energy efficiency. Energies. 2023, vol. 16, no. 13, article 5170. DOI:10.3390/ en16135170.

13. Aldersey-Williams J., Broadbent I. D., Strachan P. A. Better estimates of LCOE from audited accounts . A new methodology with examples from United Kingdom offshore wind and CCGT. Energy Policy. 2019, vol. 128, pp. 25—35. DOI: 10.1016/j.enpol.2018.12.044.

14. Dmitrieva D., Chanysheva A., Solovyova V. A. Conceptual model for the sustainable development of the Arctic’s mineral resources considering current global trends: Future scenarios, key actors, and recommendations. Resources. 2023, vol. 12, no. 6, article 63. DOI: 10.3390/resources12060063.

15. Yang Yunxia, Niu Haifeng, Li Yongying, Liu Jingjing, Xuchang. Levelized cost of electricity is a common parameter for the economic evaluation of different power generation technologies. Energy Research and Utilization. 2021, vol. 5, no. 6. DOI:10.3969/j.issn.1001-5523.2021.05.009.

16. Xia C., Ye B., Jiang J., Shu Y. Prospect of near-zero-emission IGCC power plants to decarbonize coal-fired power generation in China: Implications from the GreenGen project. Journal of Cleaner Production. 2020, vol. 271, article 122615. DOI: 10.1016/j.jclepro.2020.122615.

17. Pettinau A., Ferrara F., Tola V., Cau G. Techno-economic comparison between different technologies for CO2-free power generation from coal. Applied Energy. 2017, vol. 193, pp. 426—439. DOI: 10.1016/j.apenergy.2017.02.056.

18. Xu Y., Yang K., Zhou J., Zhao G. Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability. 2020, vol. 12, no. 9, article 3692. DOI: 10.3390/su12093692.

19. Ali B. The cost of conserved water for coal power generation with carbon capture and storage in Alberta, Canada. Energy Conversion and Management. 2018, vol. 158, pp. 387—399. DOI: 10.1016/j.enconman.2017.12.075.

20. Chen Z., Zhou Q., Zhang Y., Zhang X. Energy, exergy and economic (3E) evaluations of a novel power generation system combining supercritical water gasification of coal with chemical heat recovery. Energy Conversion and Management. 2023, vol. 276, article 116531. DOI: 10.1016/j.enconman.2022.116531.

21. Farajollahi H., Hossainpour S. Macroscopic model-based design and techno-economic assessment of a 300 MWth in-situ gasification chemical looping combustion plant for power generation and CO2 capture. Fuel Processing Technology. 2022, vol. 231, article 107244. DOI: 10.1016/j. fuproc.2022.107244.

22. Lanzini A., Kreutz T. G., Martelli E., Santarelli M. Techno-economic analysis of integrated gasification fuel cell power plants capturing CO2. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers. 2012, vol. 44694, pp. 337—347. DOI: 10.1115/GT2012-69579.

23. Yang L., Wei N., Lv H., Zhang X. Optimal deployment for carbon capture enables more than half of China’s coal-fired power plant to achieve low-carbon transformation. Iscience. 2022, vol. 25, no. 12. DOI: 10.1016/j.isci.2022.105664.

24. Cherepovitsyn A., Chvileva T., Fedoseev S. Popularization of carbon capture and storage technology in society: Principles and methods. International Journal of Environmental Research and Public Health. 2020, vol. 17, no. 22, article 8368. DOI: 10.3390/ijerph17228368.

25. Shen M., Tong L., Yin S., Liu C., Wang L., Feng W., Ding Y. Cryogenic technology progress for CO2 capture under carbon neutrality goals. A review. Separation and Purification Technology. 2022, article 121734. DOI: 10.1016/j.seppur.2022.121734.

26. Fetisov V., Gonopolsky A. M., Zemenkova M. Y., Andrey S., Davardoost H., Mohammadi A. H., Riazi M. On the integration of CO2 capture technologies for an oil refinery. Energies. 2023, vol. 16, no. 2, article 865. DOI: 10.3390/en16020865.

27. Tsvetkov P. Engagement of resource-based economies in the fight against rising carbon emissions. Energy Reports. 2022, vol. 8, pp. 874—883. DOI: 10.1016/j.egyr.2022.05.259.

28. Yao J., Han H., Yang Y., Song Y., Li G. A review of recent progress of carbon capture, utilization, and storage (CCUS) in China. Applied Sciences. 2023, vol. 13, no. 2, article 1169. DOI: 10.3390/ app13021169.

29. Lau H. C., Ramakrishna S., Zhang K., Radhamani A. V. The role of carbon capture and storage in the energy transition. Energy & Fuels. 2021, vol. 35, no. 9, pp. 7364—7386. DOI: 10.1021/acs. energyfuels.1c00032.

30. Huang W., Li Y., Chen P. China's CO2 pipeline development strategy under carbon neutrality. Natural Gas Industry B. 2023, vol. 10, no. 5, pp. 502—510. DOI: 10.1016/j.engb.2023.09.008.

31. Zhong Z., Chen Y., Fu M., Li M., Yang K., Zeng L., Liang J., Ma R., Xie Q. Role of CO2 geological storage in China's pledge to carbon peak by 2030 and carbon neutrality by 2060. Energy. 2023, vol. 272, article 127165. DOI: 10.1016/

32. Fu L., Ren Z., Si W., Ma Q., Huang W., Liao K., Huang Z., Wa Y., Li J., Xu P. Research progress on CO2 capture and utilization technology. Journal of CO2 Utilization. 2022, vol. 66, article 102260. DOI: 10.1016/j.jcou.2022.102260.

33. Tsvetkov P., Cherepovitsyn A., Fedoseev S. Public perception of carbon capture and storage. A state-of-the-art overview. Heliyon. 2019, vol. 5, no. 12. DOI: 10.1016/j.heliyon.2019.e02845.

34. Wang H., Liu Y., Laaksonen A., Krook-Riekkola A., Yang Z., Lu X., Ji X. Carbon recycling— An immense resource and key to a smart climate engineering. A survey of technologies, cost and impurity impact. Renewable and Sustainable Energy Reviews. 2020, vol. 131, article 110010. DOI: 10.1016/j.rser.2020.110010.

35. Bhatia S. K., Bhatia R. K., Jeon J. M., Kumar G., Yang Y. H. Carbon dioxide capture and bioenergy production using biological system—A review. Renewable and Sustainable Energy Reviews. 2019, vol. 110, pp. 143—158. DOI: 10.1016/j.rser.2019.04.070.

36. Guo H., Lyu X., Meng E., Xu Y., Zhang M., Fu H., Zhang Y., Song K. CCUS in China: Challenges and opportunities. SPE Improved Oil Recovery Conference. OnePetro, 2022. DOI: 10.2118/209468-MS.

37. Romasheva N., Ilinova A. CCS projects: How regulatory framework influences their deplopment. Resources. 2019, vol. 8, no. 4, article 181. DOI: 10.3390/resources8040181.

38. Cui J., Song F., Jiang Z. Efficiency vs. equity as China's national carbon market meets provincial electricity markets. China Economic Review. 2023, vol. 78, article 101915. DOI: 10.1016/j. chieco.2022.101915.

39. Bykowa E. N., Khaykin М. М., Shabaeva Y. I., Beloborodova М. D. Development of methodology for economic evaluation of land plots for the extraction and processing of solid minerals.Journal of Mining Institute. 2023, vol. 259, pp. 52—67. DOI: 10.31897/PMI.2023.6.

40. Liu G., Cai B., Li Q., Zhang X., Ouyang T. China’s pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060. Carbon Management. 2022, vol. 13, no. 1, pp. 435—449. DOI: 10.1080/17583004.2022.2117648.

41. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023, vol. 259, pp. 95—111. [In Russ]. DOI: 10.31897/pmi.2022.100.

42. Cherepovitsyn A. E., Ilinova A. A., & Evseeva O. O. Stakeholders’ management of carbon s equestration project in the state — business — society system. Journal of Mining Institute. 2019, vol. 240, pp. 731—742. [In Russ]. DOI: 10.31897/pmi.2019.6.731.

43. Wilberforce T., Olabi A. G., Sayed E. T., Elsaid K., Abdelkareem M. A. Progress in carbon capture technologies. Science of The Total Environment. 2021, vol. 761, article 143203. DOI: 10.1016/ j.scitotenv.2020.143203.

44. Liu Z., Zhao X., Tan J., Tian H. Model and simulation of engineering safety risk control based on artificial intelligence algorithm. International Transactions on Electrical Energy Systems. 2022, vol. 2022. DOI: 10.1155/2022/3204317.

45. Zubov V. P., Li Yunpeng, Slicing mining of thick gently dipping coal in China: Problems and improvement. MIAB. Mining Inf. Anal. Bull. 2023, no. 7, pp. 37—51. [In Russ]. DOI: 10.25018/0236_ 1493_2023_7_0_37.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.