Endurance evaluation of metal structures containing cracks in mining shovel EKG-10

Metal structures of mining shovels in operation with blasted and non-blasted rocks experience cyclic loads which induce initiation and growth of cracks. Cracks grow mainly from faulted welding. Despite regular periodic control of welds (ultrasonic, X-ray, acoustic emission, etc.), cracks appear and grow, and can lead to accidents. Different conditions of mining and blasting and different behavior of metal structures induce different rates of crack propagation, which is impossible to assess on a hunch. It is necessary to know crack propagation parameters as function of ambient conditions. The studies of the effect of blasting before excavation show that the average rate of crack propagation in metal structures of mining shovels depends on the average size of fragments in rock piles after blasting and on the size of blocks in non-blasted rocks. The loading nature is different in these cases. The knowledge of crack propagation rates in metal structures of mining shovels allows prompt detection of failure moments in the shovels and enables well-timed repair of the machines.

Keywords: mining shovels, metal structures, cracks, stresses, defects, crack resistance, metal fatigue, rocks.
For citation:

Nasonov M. Yu., Iungmeister D. A., Do Duc Trong Endurance evaluation of metal structures containing cracks in mining shovel EKG-10. MIAB. Mining Inf. Anal. Bull. 2022;(11):67-79. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_67.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 67-79
ISBN: 0236-1493
UDK: 621.879.0.32.004.69(035)
DOI: 10.25018/0236_1493_2022_11_0_67
Article receipt date: 28.03.2022
Date of review receipt: 16.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

M.Yu. Nasonov1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: nasonov-m@spmi.ru, ORCID ID: 0000-0002-8529-1913,
D.A. Iungmeister1, Dr. Sci. (Eng.), Professor, e-mail: iungmeister@yandex.ru, ORCID ID: 0000-0001-7858-8340,
Do Duc Trong1, Graduate Student, e-mail: ductrongiemm@gmail.com, ORCID ID: 0000-0002-9105-9491,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

Do Duc Trong, e-mail: ductrongiemm@gmail.com.

Bibliography:

1. Khlybov A. A. Otsenka nakopleniya povrezhdeniy v konstruktsionnykh metallicheskikh materialakh akusticheskimi metodami dlya obespecheniya bezopasnoy ekspluatatsii tekhnicheskikh ob"ektov [Аssessment of damage accumulation in structural metal materials by acoustic methods to ensure safe operation of technical objects], Doctor’s thesis, Moscow, 2011, 33 p.

2. Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Y. N., Linnik V. Y. Estimation of abrasiveness impact on the parameters of rock-cutting equipment. Journal of Mining Institute. 2019, vol. 240, pp. 621—627. [In Russ]. DOI: 10.31897/pmi.2019.6.621.

3. Mislibayev I. T., Makhmudov A. M., Makhmudov Sh. A. Theoretical generalization of modes and modeling of performance criteria of cutter–loaders. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 102—110. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-102-110.

4. Velikanov V. S. Mining excavator working equipment load forecasting according to a fuzzy-logistic model. Journal of Mining Institute. 2020, vol. 241, pp. 29—36. [In Russ]. DOI: 10.31897/pmi.2020.1.29.

5. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020, vol. 241, pp. 10—21. [In Russ]. DOI: 10.31897/pmi.2020.1.10.

6. Kuvshinkin S. U., Zvonarev I. E., Ivanova P. V. Relationship of dynamic properties of mine excavator hoisting mechanism versus design parameters of operating equipment. Journal of Physics: Conference Series. 2018, vol. 1118, no. 1, pp. 1—5. DOI: 10.1088/1742-6596/1118/ 1/012054.

7. Bogdanov A. P., Gainullin A. A., Efimov A. A., Levkovich R. V., Naumov D. S., Okulov K. Yu. Defects in metal structures of quarry excavators. Universum: tekhnicheskie nauki. 2015, no. 11, pp. 1—25, available at: https://cyberleninka.ru/article/n/defekty-metallokonstruktsii-kariernyh-ekskavatorov (accessed: 20.04.2022). [In Russ].

8. Grabsky A. A., Sergeev V. Yu., Grabskaya E. P. Rationale for choosing a strategyfor maintenance and repair of quarry excavators. Ugol’. 2021, no. 2, pp. 14—17. [In Russ]. DOI: 10.18796/0041-5790-2021-2-14-17.

9. Bolobov V. I., Chupin S. A. About the use of 110G13L steel as a material for the excavator bucket teeth. IOP Conference Series: Earth and Environmental Science. 2019, vol. 378, no. 1, article 012005. DOI:10.1088/1755-1315/378/1/012005.

10. Seroshtan V. I., Gaah T. V. Process of formation of cracks in metal structures of cargolifting cranes. News of the Tula state university. Sciences of Earth. 2016, no. 5, pp. 213—220. [In Russ].

11. Shishlyannikov D. I., Ivanov S. L., Zvonarev I. E., Zverev V. Yu. Improving efficiency of shearing and hauling machines in longwall potash mining. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 116—124. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0-116-124.

12. Fadeev D., Ivanov S. Features of the walking mechanism of a floating platform autonomous modular complex for the extraction and processing of peat raw materials. Scientific and Practical Studies of Raw Material Issues. Proceedings of the Russian-German Raw Materials Dialogue: A Collection of Young Scientists Papers and Discussion, 2019. London: CRC Press / Taylor & Francis Group, 2020, pp. 239—243. DOI: 10.1201/9781003017226-33.

13. Krasnyy V. A., Maksarov V. V., Maksimov D. D. Improving the wear resistance of piston rings of internal combustion engines when using ion-plasma coatings. Key Engineering Materials. 2020, vol. 854, рр. 133—139. DOI: 10.4028/www.scientific.net/KEM.854.133.

14. Semenov V. V. Work of steel elements and structures with cracks, live-honor of engineering structures that have cracks. Young Researchers' Journal of ISTU. 2014, no. 3, pp. 3—4. [In Russ].

15. Manyele S. Investigation of excavator performance factors in an open-pit mine using loading cycle time. Engineering. 2017, vol. 9, pp. 599—624. DOI: 10.4236/eng.2017.97038.

16. Makarov A. P., Shevchenko A. N., Pavlov A. M. Determination of the critical length of a crack in the metal structures of quarry excavators. Proceedings of Irkutsk State Technical University. 2015, no. 12, pp. 57—63. [In Russ].

17. Nikitin I. S., Burago N. G., Nikitin A. D., Yakushev V. L. Determination of the critical plane and assessment of fatigue durability under various cyclic loading regimes. PNRPU Mechanics Bulletin. 2017, no. 4, pp. 238—252. [In Russ]. DOI: 10.15593/perm.mech/2017.4.15.

18. Gorbovets M. A., Khodinev I. A., Ryzhkov P. V. Equipment for testing low-cycle fatigue with a «hard» loading cycle. Trudy VIAM. 2018, no. 9, pp. 51—60. [In Russ]. DOI: 10.18577/ 2307-6046-2018-0-9-51-60.

19. Shutova M. N., Evtushenko S. I., Gontarenko I. V. Determination of reliability and the category of technical condition of damaged metal structures based on a numerical experiment. Bulletin of Higher Educational Institutions. North Caucasus region. Technical Sciences. 2018, no. 4, pp. 98—104. [In Russ].

20. Saraev Yu. N., Bezborodov V. P., Gladkovsky S. V., Golikov N. I. Improving the reliability of metal structures when operating in conditions of low climatic temperatures through the integrated application of modern methods for modifying the welded joint zone. Svarochnoe proizvodstvo. 2016, no. 9, pp. 3—9. [In Russ].

21. Shibanov D. A., Ivanov S. L., Yemelyanov A. A., Pumpur E. V. Evaluation of working efficiency of open pit shovels in real operating conditions. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 86—94. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-86-94.

22. Skibin G. M., Shutova M. N., Evtushenko S. I., Chutchenko I. A. Reliability increase of running gears elements of mining traction locomotives using finite-element analysis package. IOP Conference Series: Earth and Environ-mental Science. 2017, vol. 87, no. 2, article 022021. DOI: 10.1088/1755-1315/87/2/022021.

23. Agafonov K. V. Ways to reduce risks in the operation of lifting and transport equipment of rocket and rocket-space complexes in the post-warranty period with the use of nondestructive control of acoustic emission. Modern technics and technologies. 2016, no. 4, pp. 5—9. [In Russ].

24. Voichenko K. Yu., Remshev E. Yu., Silaev M. Yu., Glushko A. N. Study of the possibilities of assessing the quality of loaded metal structures by acoustic methods of non-destructive control. Metalloobrabotka. 2014, no. 3, pp. 10—15. [In Russ].

25. Lakhova E. N. Metodika prognozirovaniya rabotosposobnosti kriticheski nagruzhennykh ob"ektov mashinostroeniya [Methods of predicting the performance of critically loaded machine building objects], Candidate’s thesis, Saint-Petersburg, 2012, 18 p.

26. Antonova Yu. V., Gudovichev V. V., Raenko A. V., Borchev K. S., Saralidze Z. U., Sokolov S. V. Methods forestimating the carrying capacity and residual life of structural. Nauchnyy zhurnal. 2016, no. 2, pp. 28—36. [In Russ].

27. Karzov G. P., Leonov V. P., Timofeev B. T. Svarnye sosudy vysokogo davleniya [Welded pressure vessels], Moscow-Leningrad, Mashinostroenie, 1982, 287 p.

28. Shibanov D. A., Ivanov S. L., Shishkin P. V. Digital technologies in modeling and design of mining excavators. Journal of Physics: Conference Series. 2021, vol. 1753, no. 1, article 012052. DOI: 10.1088/1742-6596/1753/1/012052.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.