Evaluation of the effectiveness of natural ventilation of a metro bridge in the event of a cable fire, taking into account protective structures from climatic precipitation

Currently in Russia there are no legally approved recommendations on the procedure, structure and requirements for the selection of protective structures from climatic precipitation for metro bridges. The development of design recommendations is carried out by research organizations with the relevant competence in this area. In order to increase emergency preparedness during the operation of the metro bridge for the section of the KalininskoSolntsevskaya metro line from the Rasskazovka metro station to the Vnukovo metro station, based on the analysis of the current regulatory documentation and scientific literature, as well as studies of the combustible properties of cables, — in the software package Ansys CFD has developed virtual analogs of the metro bridge and the processes occurring in the event of a fire associated with burning a cable (smoke). In the construction of the metro bridge, lamellas were taken into account — elements that protect the paths from climatic precipitation. Computer simulation and subsequent analysis of the results obtained made it possible to formulate a list of recommendations for the placement of cables. The proposed approaches can be used to develop special technical specifications for other similar objects.

Keywords: metro, bridge, computer simulation, ventilation, сlimatic factors, fire, smoke.
For citation:

Kaledina N. O., Kobylkin S. S., Kobylkin A. S., Kondrev R. S., Beleckij D. N. Evaluation of the effectiveness of natural ventilation of a metro bridge in the event of a cable fire, taking into account protective structures from climatic precipitation. MIAB. Mining Inf. Anal. Bull. 2021;(10-1):17—28. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_17.

Issue number: 10
Year: 2021
Page number: 17-28
ISBN: 0236-1493
UDK: 624.63—52:622.44
DOI: 10.25018/0236_1493_2021_101_0_17
Article receipt date: 30.06.2021
Date of review receipt: 03.08.2021
Date of the editorial board′s decision on the article′s publishing: 10.09.2021
About authors:

Kaledina N. O.1, Dr. Sci. (Eng.), professor;
Kobylkin S. S.1, Dr. Sci. (Eng.), professor, kobylkin.s@misis.ru;
Kobylkin A. S.1,3, Cand. Sci. (Eng.), Associate Professor;
Kondrev R. S.2, chief Engineer of the Project;
Beleckij D. N.2, deputy chief Engineer of the Project;
1 Mining Institute NUST “MISiS”, Moscow, Russia;
2 AO Metrogiprotrans;
3 IPCON RAS, Moscow, Russia.


For contacts:

1. GOST 31565—2012 Kabel’nye izdeliya. Trebovaniya pozharnoj bezopasnosti / GOST ot 22 noyabrya 2012 g. no. 31565—2012. Moscow: 2014. 11 p. [In Russ]

2. SP 131.13330.2012 Stroitel’naya klimatologiya. Aktualizirovannaya redakciya SNiP 23—01—99* (s Izmeneniyami N 1, 2) / NIISF RAASN. Moscow: 2012. 113 p. [In Russ]

3. Bezopasnoe dvizhenie: kakie kabeli prokladyvayut v tonnelyah metro [Safe traffic: which cables are laid in metro tunnels]. https://www.mos.ru/news/item/47860073/ 2018 [In Russ]

4. Surikov A. V., Leshenyuk N. S. Calculation of visibility in premises under fire conditions using the FDS software package. Vestnik Universiteta grazhdanskoj zashchity MCHS Belarusi, Vol. 2, no. 2, 2018. pp. 147—160.

5. Krasyuk A. M. Tonnel’naya ventilyaciya metropolitenov [Tunnel ventilation of subways]. Novosibirsk: Nauka, 2006. 164 p. [In Russ]

6. GOST 12.1.004 Pozharnaya bezopasnost’. Obshchie trebovaniya / GOST ot 01.07.1997. Moscow, 2006. 68 p. [In Russ]

7. Primenenie polevogo metoda matematicheskogo modelirovaniya pozharov v pomeshcheniyah: Metodicheskie rekomendacii [Application of the field method of mathematical modeling of fires in premises: Methodological recommendations]. Moscow: VNIIPO, 2003. 35 p. [In Russ]

8. ANSYS FLUENT Theory Guide. Release 18.0. ANSYS, Inc. 2017. 1034 p. [In Russ]

9. Kobylkin, S. S., Kobylkin, A. S. 3D modeling in engineering design of mine rescue work tactics. Gornyi Zhurnal 2018 (5), pp. 82—85 DOI: 10.17580/gzh.2018.05.13 [In Russ]

10. Levin L.YU., Kormshchikov D. S., Grishin E. L. Investigation of the processes of changing the mine atmosphere to determine the causes of a group accident at one of the mines of the Russian Federation. Gornoe ekho. 2020. no. 3 (80). pp. 115—119. [In Russ]

11. Kazakov B. P., Kolesov E. V., Nakaryakov E. V., Isaevich A. G. Review of models and methods of calculation of aerogasodynamic processes in ventilation networks of mines and mines. MIAB. Mining Inf. Anal. Bull. 2021. no. 6. pp. 5—33. DOI: 10.25018/0236— 1493—2021—6-0—5. [In Russ]

12. Levin, L.Yu., Semin, M. A., Klyukin, Yu.A. Estimation of wall roughness functions acceptability in CFD simulation of mine ventilation networks. Proceedings of Summer School-Conference «Advanced Problems in Mechanics 2014». 2014. pp. 25—32.

13. Gendler S. G. Principles of the Gimrinsky road tunnel ventilation modernization. BHR Group 14th International Symposium on Aerodynamics and Ventilation of Tunnels. 2011. pp. 43—53.

14. Trushko V. L., Gendler S. G., YAkovenko A. A. Air quality management in the construction of underground structures. Zapiski Gornogo instituta. 2012. T. 197. pp. 256—261. [In Russ]

15. Dynamic CFD simulations for rail tunnel ventilation URL: https://www.computationalfluiddynamics.com.au/dynamic-cfd-simulations-rail-tunnel-ventilation/ (дата обращения 19.06.2021).

16. Yi Zhebg, Jerry C. Tien, Ying Li Comparison of diffuser assisted ventilation and Push-pull systems for DPM Control in a Dead-end Entry 16th North American Mine Ventilation symposium. Colorado USA. 2017. pp. 149—158.

17. Wachowicz, J., Laczny, J. M., Iwaczenko, S., Janoszek T., Cempa-Balewicz M. Modelling of underground coal gasification process using CFD methods. Arch Min. Sci., 2015 Vol. 60, no. 3. pp. 663—676.

18. Acuna, E. I., Hurtado, J. P. A summary of the Comoutational fluid dynamic application to the new level mine project of El teniente. 10th Internrtional Mine Ventilation Congress, IMVC2014. The Mine Ventilation Society of South Africa. 2014. 91—97 p.

19. Kobylkin S. S., Timchenko A. N., Kobylkin A. S. Use of Computer Simulation in the Selection of Operating Parameters for the Dust Extractor Built into the Roadheader. Bezopasnost Truda v Promyshlennosti, 2021, no. 3, pp. 21—27. DOI: 10.24000/0409—2961— 2021—3-21—27 [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.