Assessment of efficiency of transition to a new wave of technological innovation in underground mining during is continuous progression to deeper levels

A new wave of technological innovation in an underground mine involves state-ofthe art control of mineral quality using high-velocity belt-type separators to remove the bulk of waste right at the stage of mining. This enables pushing the mine project limits and allows extraction of noneconomic low-grade ore reserves. Being very attractive, the in-situ separation technology to be introduced in mines needs that separated waste is handled, which is possible by means of combining separation with the technology of cemented backfill preparation using mobile modular-type backfill plants. The implemented research included the comparative economic analysis of the ground-level and underground location alternatives of the backfill prep plants at the same flow charts of rock haulage and hoist. The economic and mathematical model is developed for the assessment of the ground-level and underground locations of backfill prep plants. The underground location appears to be more preferable. Efficiency of transition to a new wave of technological innovation in underground mining continuously progressing to deeper levels is quantitatively assessed.

Keywords: new wave of technological innovation, ore quality control, underground mining, in-situ separation, high-velocity belt-type separators, cemented backfill, mobile backfill preparation plant, waste handling, economical and mathematical modeling, ore haulage and hoist cost reduction.
For citation:

Kaplunov D. R., Radchenko D. N., Fedotenko V. S., Lavenkov V. S. Assessment of efficiency of transition to a new wave of technological innovation in underground mining during is continuous progression to deeper levels. MIAB. Mining Inf. Anal. Bull. 2020;(12):5-15. [In Russ]. DOI: 10.25018/0236-1493-2020-12-0-5-15.

Acknowledgements:

This study was supported by the Russian Foundation for Basic Research, Grant No. 18-05-00114_a.

Issue number: 12
Year: 2020
Page number: 5-15
ISBN: 0236-1493
UDK: 622.273.2
DOI: 10.25018/0236-1493-2020-12-0-5-15
Article receipt date: 10.07.2020
Date of review receipt: 13.08.2020
Date of the editorial board′s decision on the article′s publishing: 10.11.2020
About authors:

D.R. Kaplunov1, Corresponding Member of Russian Academy of Sciences, Dr. Sci. (Eng.), Professor, Scientific Director of Department, e-mail: kapdan@rambler.ru,
D.N. Radchenko1, Cand. Sci. (Eng.), Assistant Professor, Senior Researcher, e-mail: radchenko_dn@ipkonran.ru,
V.S. Fedotenko1, Dr. Sci. (Eng.), Scientific Secretary of Institute, e-mail: victorfedotenko@gmail.com,
V.S. Lavenkov1, Junior Researcher, e-mail: lavenkov_vs@ipkonran.ru,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

D.N. Radchenko, e-mail: radchenko_dn@ipkonran.ru.

Bibliography:

1. Schipper B. W., Lin H.-C., Meloni M. A., Wansleeben K., Heijungs R., van der Voet E. Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling. 2018. Vol. 132. Pp. 28–36. https://linkinghub.elsevier.com/retrieve/ pii/S0921344918300041 (accessed 03.06.2019).

2. Daigo I., Osako S., Adachi Yo., Matsuno Ya. Time-series analysis of global zinc demand associated with steel. Resources, Conservation and Recycling. 2014. Vol. 82. Pp. 35–40. https:// linkinghub.elsevier.com/retrieve/pii/S0921344913002206 (accessed 03.06.2019).

3. Schoenberger E. Environmentally sustainable mining: The case of tailings storage facilities. Resources Policy. 2016. Vol. 49. Pp. 119–128. http://www.sciencedirect.com/science/article/pii/S0301420716300782 (accessed 15.06.2020).

4. Suopajärvi L., Poelzer G. A., Ejdemo T., Klyuchnikova E., Korchak E., Nygaard V. Social sustainability in northern mining communities. A study of the European North and Northwest Russia. Resources Policy. 2016. Vol. 47. Pp. 61–68. http://www.sciencedirect.com/science/article/pii/S0301420715001221 (accessed 15.06.2020).

5. Ryl'nikova M. V., Radchenko D. N., TSupkina M. V. Vovlechenie tekhnogennykh mineral'nykh ob"ektov v polnyy tsikl osvoeniya rudnykh mestorozhdeniy: reshenie problem tekhnosfernoy bezopasnosti [Inclusion of manmade mineral objects in complete ore mining cycle: Technosphere safety solutions], Sevastopol', SGU, 2019, pp. 1428–1432.

6. Baninla Y., Zhang M., Lu Y., Liang R., Zhang Q., Zhou Yu., Khan K. A transitional perspective of global and regional mineral material flows. Resources, Conservation and Recycling. 2019. Vol. 140. Pp. 91–101. http://www.sciencedirect.com/science/article/pii/S0921344918303422 (accessed 15.06.2020).

7. Robben C., Wotruba H. Sensor-based ore sorting technology in mining-past, present and future. Minerals. 2019. Vol. 9. No 9. P. 523.

8. Nadolski S., Samuels M., Klein B., Hart C. J. R. Evaluation of bulk and particle sensorbased sorting systems for the New Afton block caving operation. Minerals Engineering. 2018. Vol. 121. Pp. 169–179. http://www.sciencedirect.com/science/article/pii/S0892687518300761 (accessed 15.06.2020).

9. Robben C., Condori P., Pinto A., Machaca R., Takala A. X-ray-transmission based ore sorting at the San Rafael tin mine. Minerals Engineering. 2020. Vol. 145. Article 105870. http:// www.sciencedirect.com/science/article/pii/S089268751930281X (accessed 15.06.2020).

10. Schindler I. Simulation-based comparison of cut-and-fill mining with and without preconcentration. Master’s Thesis. Aachen, Germany, 2003.

11. Kaplunov D. R., Ryl'nikova M. V., Radchenko D. N., Mannanov R. Sh., Zverev A. P.Technological innovations in elimination of voids using mobile backfill plants. Mine Surveying Bulletin. 2011, no 6, pp. 5–9. [In Russ].

12. Kaplunov D. R., Radchenko D. N. Underground mined-out areas: Principles of multipurpose use in complete cycle of integrated solid mineral mining. Gornyi Zhurnal. 2016, no 5, pp. 28–33. http://www.rudmet.ru/journal/1530/article/26293/?language=en (accessed 08.10.2016). [In Russ].

13. Kaplunov D. R., Radchenko D. N. Laws of formation of process properties in flows of mineral raw materials as a framework for simulation modeling of technological innovation in underground mining. Kombinirovannaya geotekhnologiya: perekhod k novomu tekhnologicheskomu ukladu. Magnitogorsk, 2019, pp. 288–300.

14. Kaplunov D. R., Ryl'nikova M. V., Radchenko D. N., Korneev Yu. V. Mobile backfill plants in ore mining with backfill. Gornyi Zhurnal. 2013, no 2, pp. 101–104. http://elibrary.ru/ item.asp?id=19027079. [In Russ].

15. Kaplunov D. R., Radchenko D. N. Mine design philosophy and technology selection towards sustainable underground mining. Gornyi Zhurnal. 2017, no 11, pp. 52–59. https://elibrary. ru/item.asp?id=30741675 (accessed 15.06.2020). [In Russ].

16. Imitatsionnaya model' gornotekhnicheskoy sistemy, vklyuchayushchey podzemnye kompleksy separatsii rud i zakladki vyrabotannogo prostranstva [Simulation modeling of a geotechnical system with in-situ ore separation and backfill plant], https://www.elibrary.ru/item. asp?id=42346257 (accessed 26.02.2020). [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.