Evaluation of the efficiency of energy storage applications in open-pit railway transport

The paper considers application of energy storage devices at mining locomotives of open-pit railway transport. A simulation model for carrying out traction-energy calculations and determining the energy balance of train is proposed. On the example of the Kachkanar mining plant it was found that for a 12-hour shift the power consumption for traction is 14 GJ (about 3,900 kWh) per train utilizing all braking energy. There the amount of braking energy is 8.48 GJ (about 2,360 kWh), which stands for about 37% of the traction energy consumption. Using the developed model, the efficiency of using LTO and LFP batteries for the accumulation and subsequent use of the energy of electric braking has been investigated. It has been found that the most expedient case is the installation of LTO battery weighing about 4.5 tons with a power equal to the peak power of the locomotive, having a useful energy capacity of about 400 kWh. It is shown that in modern conditions the usage of energy storage devices based on lithium batteries on fully electrified lines is at the payback limit, and its feasibility is determined by indirect effects. It has also been shown that application of an on-board energy storage will make it possible to realize a partial autonomous movement of 10-20 km on a flat track, which will partially eliminate the installation of a traction network with an increase in the depth of the mine. The higher efficiency of batteries application at the locomotives with diesel generator units is noted in the case of driving cycles of the train enabling frequent application of batteries.

Keywords: Simulation, model, energy storage, open-pit transport, mining locomotive, LTO battery, LFP battery, energy saving, degradation, economic efficiency
For citation:

Spiridonov E. A., Yaroslavtsev M. V. Evaluation of the efficiency of energy storage applications in open-pit railway transport. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):241—256. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_241.

Issue number: 12
Year: 2022
Page number: 241-256
ISBN: 0236-1493
UDK: 629.423.2-853
DOI: 10.25018/0236_1493_2022_122_0_241
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Spiridonov E. A.1, Cand. Sci. (Eng.), Associate Professor, Department of Electrotechnical Complexes, NSTU, ORCID: 0000-0002-7229-0954, e-mail: spiridonov@corp.nstu.ru;
Yaroslavtsev M. V.1, Cand. Sci. (Eng.), Associate Professor, Department of Electrotechnical Complexes, NSTU, ORCID: 0000-0002-1440-2065, e-mail: yaroslavcev@corp.nstu.ru.
1 Novosibirsk State Technical University, Russia, 630073, Novosibirsk, Karl Marx Avenue, 20.


For contacts:

Spiridonov E. A., spiridonov@corp.nstu.ru


1. Galanina T. V., Baumgarten M. I., Koroleva T. G. Ecological-and-economic modeling of anthropogenic impact on the environment and health in mining regions. MIAB. MIAB. Mining Inf. Anal. Bull. 2019, vol. 4, pp. 88–97. [In Russ]. DOI: 10.25018/0236-14932019-04−0-88−97.

2. Timofeev I. P., Bolshunov A. V., Stolyarova M. S., Avdeev A. M. Features of pulling equipment operation in curved railroad. MIAB. Mining Inf. Anal. Bull. 2019, vol. 1, pp. 171–178. [In Russ]. DOI: 10.25018/0236-1493-2019-01−0-171−178.

3. Zhuravlev A. G. The issues of optimization parameters of quarry transport systems. MIAB. Mining Inf. Anal. Bull. 2020, vol. 3−1, pp. 583–601. [In Russ]. DOI: 10.25018/02361493-2020-31−0-583−601.

4. Ben-Awuah E., Richter O., Elkington T., Pourrahimian Y. Strategic mining options optimization: Open pit mining, underground mining or both. International Journal of Mining Science and Technology. 2016, vol. 26, iss. 6, pp. 1065–1071. DOI: 10.1016/j.ijmst.2016.09.015.

5. Belisha E. Railway transport as an important factor in the sustainable development of mining. International Multidisciplinary Scientific GeoConference-SGEM. Albena, BULGARIA. 2016, pp. 705–709. DOI: 10.5593/SGEM2016/B12/S03.092.

6. Tarasov P. I., Khazin M. L., Zyryanov I. V., Nevolin D. G. Mining operations in construction of main transport routes. Gornaya Promyshlennost. 2020, vol. 5, pp. 91–96. DOI: 10.30686/1609-9192-2020-5-91−96.

7. Potryasaev Y. A., Pianykh A. A., Brezshnev I. V. Organizing of the Rock transportation by Railway Transport. Gornyi Zhurnal. 2017, vol. 5, pp. 36–37. DOI: 10.17580/gzh.2017.05.07.

8. Asif Z., Chen Z., Han Y. Air quality modeling for effective environmental management in the mining region. Journal of the Air and Waste Management Association. 2018, vol. 68(9), pp. 1001–1014. DOI: 10.1080/10962247.2018.1463301.

9. Göhlich D., Fay T.-A., Park S. Conceptual Design of Urban E-Bus Systems with Special Focus on Battery Technology. Proceedings of the 22nd International Conference on Engineering Design (ICED19), Delft, The Netherlands. 2019. DOI:10.1017/dsi.2019.289.

10. Nemeth T. Schröer P., Kuipers M., Sauer D. Lithium titanate oxide battery cells for high-power automotive applications — Electro-thermal properties, aging behavior and cost considerations. Journal of Energy Storage. 2020, vol. 31,101656. DOI: 10.1016/j.est.2020.101656.

11. Burke A., Zhao J. Development, Performance, and Vehicle Applications of High Energy Density Electrochemical Capacitors. Applied Sciences (Switzerland). 2022, vol. 12(3). art. 1726. DOI: 10.3390/app12031726.

12. Kimura R., Kondo K., Aiso K., Kobayashi H., Sakamoto S., Okada A., Sasaki K., Kato T. A Method to Design A Power Flow and Energy Management Controller for Battery and EDLC Hybrid Electric Vehicle. IEEE International Symposium on Industrial Electronics. 2021. DOI: 10.1109/ISIE45552.2021.9576437.

13. Xu B., Oudalov A., Ulbig A., Andersson G., Kirschen D. S. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Transactions on Smart Grid. 2018, vol. 9, no. 2, pp. 1131–1140. DOI: 10.1109/TSG.2016.2578950.

14. Stepanenko V. P., Belozyerov V. I., Sorin L. N. Prospects for the use of combined energy storage devices in open-pit railway transport. MIAB. Mining Inf. Anal. Bull. 2015, no. 5, pp. 317–322. [In Russ].

15. Keropyan A., Kantovich L., Voronin B., Kuziev D., Zotov V. Influence of uneven distribution of coupling mass on locomotive wheel pairs, its tractive power, straight and curved sections of industrial rail tracks. IOP Conference Series: Earth and Environmental Science. 2017, no 87, art. 062005. DOI: 10.1088/1755−1315/87/6/062005.

16. Yu W., Zhengyu C., Xuning F., Xuebing H., Languang L., Jianqiu L., Minggao O. Overcharge durability of Li4Ti5O12 based lithium-ion batteries at low temperature. Journal of energy storage. 2018, vol.19, pp. 302–310. DOI: 10.1016/j.est.2018.08.012.

17. Bakhturin Y. A. Actual issues of railway transport in open pits. Problemy nedropol’zovanija. 2014, no. 3(3), pp. 145–153. [In Russ].

18. Nikolaidis P. Chatzis S. Poullikkas A. Life cycle cost analysis of electricity storage facilities in flexible power systems. International journal of sustainable energy. 2019, vol. 38, iss. 8, pp. 752–772. DOI: 10.1080/14786451.2019.1579815.

19. Zhang X., Peng H., Wang H., Ouyang M. Hybrid Lithium Iron Phosphate Battery and Lithium Titanate Battery Systems for Electric Buses. IEEE Transactions on Vehicular Technology. 2018, vol. 67 (2), pp. 956–965. DOI: 10.1109/TVT.2017.2749882.

20. Ovcharenko S. M., Minakov V. A., Vedruchenko V. P. Improving the technological process of repairing of diesel engines of the D-49 type. Izvestiya Transsiba. 2019, no 2(38), pp. 2–8. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.