Evaluation of the efficiency of the phytoextraction process in the quarry wastewater treatment

The development of mineral deposits in an open way at mining enterprises is accompanied by drilling and blasting. These works are carried out using explosives based on ammonium nitrate (ammonium nitrate). As a result of flooding of wells and washing out of explosive particles from the rock, ammonium nitrate enters the resulting quarry wastewater of a significant volume. To treat this type of wastewater, it is proposed to use a system of constructed wetlands using various types of wetland vegetation. Systems of this type are an environmentally safe and economical way to remove pollutants from wastewater, based on the natural processes of life of vegetation, microorganisms and bacteria. In addition to the accumulation of pollutants from quarry wastewater, wetland vegetation is involved in the production of organic matter and in creating a favorable habitat for microorganisms. On the basis of the Center for Collective Use of St. Petersburg Mining University, an experimental study was carried out on the acclimatization of wetland vegetation of three types and a further decrease in the concentration of nitrates with their help. During the experiment, a positive dynamics of nitrate absorption by all types of vegetation was obtained with an efficiency of up to 45%.

Keywords: sewage pollution, nitrogen compounds, nitrate, wetland vegetation, jointed rush, water plantain, broad leaved reedmace, wetlands.
For citation:

Pashkevich M. A., Korotaeva A. E. Evaluation of the efficiency of the phytoextraction process in the quarry wastewater treatment. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):349—360. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_349.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 349-360
ISBN: 0236-1493
UDK: 628.357.4
DOI: 10.25018/0236_1493_2022_61_0_349
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Pashkevich M. A., Dr.Sci. (Eng.), head of department of Geoecology, http://orcid. org/0000-0001-7020-8219, Saint Petersburg Mining University, 199106, Saint-Petersburg, Vasilievsky Island, 21st Line, d. 2, Russia, e-mail: mpash@spmi.ru;
Korotaeva A. E., postgraduated student of the department of Geoecology, http://orcid. org/0000-0002-0211-6782, Saint Petersburg Mining University, 199106, Saint-Petersburg, Vasilievsky Island, 21st Line, d. 2, Russia, e-mail: s205056@stud.spmi.ru.

 

For contacts:
Bibliography:

1. Bobrova Z. M., Il’ina O. Yu., Studenok G. A., Cejtlin E. M. The impact of enterprises of the mineral resource complex of the Urals on water resources. Izvestiya Ural’skogo gosudarstvennogo gornogo universiteta. 2016, vol. 1, no. 41, pp. 62–66. [In Russ].

2. Serpukhovitina T. Yu., Lazarev R. A., Logvinova A. N., Tsytsorin I. A. Analysis of anthropogenic factors of influence on the hydrosphere and ways to reduce them in mining regions. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 263–274. DOI: 10.25018/02361493-2021-210—263—274. [In Russ].

3. Chukaeva M. A., Matveeva V. A. The present-day hydrochemical state of hydroecosystems suffering the technogenic effect of AO Apatit. Water Resourses. 2018, vol. 45, no. 6, pp. 935–940. DOI: 10.1134/s0097807818060040.

4. Patokin D., Danilov A., Isakov A. Environmental monitoring of natural waters in the zone of impact of an enterprise producing explosives. IOP Conference Series: Earth and Environmental Science. 2020, vol. 578, no. 1, article. 012038. DOI:10.1088/17551315/578/1/012038/

5. Pat-Espadas A. M., Portales R. L., Amabilis-Sosa L. E., Gómez G., Vidal G. Review of constructed wetlands for acid mine drainage treatment. Water. 2018, vol. 10, article 1685. DOI:10.3390/w10111685.

6. Kharko P. A., Matveeva V. A. Bottom sediments in a river under acid and alkaline wastewater discharge. Ecological Engineering Environmental Technology. 2021, vol. 22, no. 3, pp. 35–41. DOI:10.12912/27197050/134870.

7. Cheremisina O. V. Aspect of technology protection of hydrosphere against ions of heavy metals in a zone of influence of objects. Zapiski Gornogo instituta. 2013, vol. 203, pp. 116–119. [In Russ].

8. Kulikova A. A., Ovchinnikova T. I. On the issue of reducing geoecological risks at mining enterprises. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 251–262. DOI: 10.25018/0236-1493-2021-21-0-251-262. [In Russ].

9. Aleinikov N. N., Vershinin N. N., Shvedov K. K. Problems of monitoring the environmental safety of the environment at the sites of blasting operations. Zapiski Gornogo instituta. 2001, vol. 148, no. 2, pp. 3–5. [In Russ].

10. Petrov D. S., Kuznecov V. S., Suprun I. K., Zhuravkova M. A., Solnyshkova M. A. Phytoremediation efficiency of duckweed communities for mining enterprises wastewater treatment from nitrogen compounds. Journal of Physics: Conference Series. 2019, vol. 1399, article 055044. DOI:10.1088/1742—6596/1399/5/055044.

11. Korotaeva A. E., Pashkevich M. A. Spectrum survey data application in ecological monitoring of aquatic vegetation. MIAB. Mining Inf. Anal. Bull. 2021, no. 5—2, pp. 231–244. DOI: 10.25018/0236_1493_2021_52_0_231. [In Russ].

12. Colares G. S. Dell’Osbel N., Wiesel P. G., Oliveira G. A., Lemos P. H. Z., da Silva F. P., Lutterbeck C. A., Kist L. T., Machado Ê. L. Floating treatment wetlands: A review and bibliometric analysis. Science of Total Environmental. 2020, vol. 714. Article 136776. DOI:10.1016/j.scitotenv.2020.136776.

13. Dong Y., Yuan H., Zhang R., Zhu N. Removal of ammonia nitrogen from wastewater: A rewiew. Transactions of the ASABE. 2019, vol. 62, no. 6, pp. 1767–1778.

14. Marchand L., Mench M., Jacob D. L., Otte M. L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environmental Pollution. 2010, vol. 158, pp. 3447–3461. DOI:10.1016/j.envpol.2010.08.018.

15. Strizhenok A. V., Ivanov A. V. Ecological assessment of the current state of environmental components on the territory of the impact of cement production industry. Journal of Ecological Engineering. 2017, vol. 18, no. 6, pp. 160–165. DOI:10.12911/22998993/76850

16. Pashkevich M. A., Korotaeva A. E. Analysis of biological methods for quarry wastewater treatment from nitrogen compounds. Geologiya I Geofizika Yuga Rossii. 2021, vol. 11, no. 4, pp. 170–182. DOI: 10.46698/ VNC.2021.87.18.014. [In Russ].

17. Rybka K. Yu., Shchegolkova N. M. Mechanisms of nutrients (nitrogen and phosphorus) removal from wastewater in constructed wetlands. Ecosistemy: ecologiya i dinamika. 2018, vol. 2, no. 4, pp. 144–171. DOI:10.1017/CBO9781107415324.004. [In Russ].

18. Timofeevа S. S., Ulrich D. V., Timofeev S. S. Phytofilters for wastewater treatment. Vestnik tekhnologicheskogo universiteta. 2016, vol. 19, no. 16, pp. 162–165. [In Russ].

19. Borne K. E., Fassman E. A., Tanner C. C. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecological Engineering. 2013, vol. 54, pp. 173–182. DOI:10.1016/j.ecoleng.2013.01.031.

20. Kulikova A. A., Stelmakhov A. A., Bacheva T. A., Tsymbal M. N. Treatment of water inflow from flooded underground mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 38—47. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-38-47.

21. Vymazal J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering. 2014, vol. 73, pp. 724–751. DOI:10.1016/j.ecoleng.2014.09.034.

22. Yevdokimova G. A., Ivanova L. A., Mozgova N. P., Myazin V. A., Fokina N. V. Floating Bioplateau for Treatment of Waste Quarry Waters from Mineral Nitrogen Compounds at the Arctic Conditions. Ecologiya i promyshlennost’ Rossii. 2015, vol. 19, no. 9, pp. 35–41. DOI:10.18412/1816-0395-2015-9-35—41. [In Russ].

23. Rozema E. R., VanderZaag A. C., Wood J. D., Drizo A., Zheng Y., Madani A., Gordon R. J. Constructed wetlands for agricultural wastewater treatment in northeastern North America: A review. Water. 2016, vol. 8, no. 5. Article 173. DOI:10.3390/w8050173.

24. Shelef O., Gross A., Rachmilevitch S. Role of plants in a constructed Wetland: Current and new perspectives. Water. 2013, vol. 5, no. 2, pp. 405–419. DOI:10.3390/w5020405.

25. Vymazal J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal : A review of a recent development. Water Research. 2013, vol. 47, no. 14, pp. 4795–4811. DOI:10.1016/j.watres.2013.05.029.

26. Dashko R., Shidlovskaya A. Impact of microbial activity on soil properties. Canadian Geotechnical Journal. 2016, vol. 53, no. 9, pp. 1386–1397. DOI:10.1139/cgj-2015—0649.

27. Pavlineri N., Skoulikidis N. T., Tsihrintzis V. A. Constructed Floating Wetlands: A review of research, design, operation and management aspects, and data metaanalysis. Chemical Engineering Journal. 2017, vol. 308, pp. 1120–1132. DOI:10.1016/j. cej.2016.09.140.

28. Zhu G., Peng Y., Li B., Guo J., Yang Q., Wang S. Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology. 2008, vol. 192, pp. 159—195. DOI:10.1007/978—0-387—71724—1_5.

29. Rahimi S., Modin O., Mijakovic I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances. 2020, vol. 43. Article 107570. DOI:10.1016/j.biotechadv.2020.107570.

30. Rajan R. J., Sudarsan J. S., Nithiyanantham S. Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment. Environmental Engineering Research. 2019. Vol 24, no. 2, pp. 181–190. DOI:10.4491/ EER.2018.127.

31. Sudarsan J. S., Roy R. L., Baskar G., Deeptha V. T., Nithiyanantham S. Domestic wastewater treatment performance using constructed wetland. Sustainable Water Resources Management. 2015, vol. 1, no. 2, pp. 89–96. DOI:10.1007/s40899-015-0008-5.

32. De La Varga D., Soto M., Arias C. A., van Oirschot D., Kilian R., Pascual A., Álvarez J. A. Constructed wetlands for industrial wastewater treatment and removal of nutrients. PA: IGI Global, 2017. ch.8, Pp. 202–230. DOI:10.4018/978—1-5225—1037—6.ch008

33. Shahid M. J., Arslan M., Ali S., Siddique M., Afzal M. l. Floating Wetlands: A Sustainable Tool for Wastewater Treatment. Clean Soil, Air, Water. 2018, vol. 46, no. 10. DOI:10.1002/clen.201800120

34. Alekseenko V. A., Shvydkaya N. V., Alekseenko A. V., Machevariani M. M., Bech J., Pashkevich M. A., Puzanov A. V., Nastavkin A. V., Roca N. Element accumulation patterns of native plant species under the natural geochemical stress. Plants. 2021, vol. 10, no. 1. Article 33. DOI: 10.3390/plants10010033.

35. Petrova T. A., Rudzish E. Types of soil improvers for reclamation of mining-disturbed lands. MIAB. Mining Inf. Anal. Bull. 2021, no. 4, pp. 100—112. DOI: 10.25018/0236_ 1493_2021_4_0_100. [In Russ].

36. Gusev A. I. Biogeochemical indicators of technogenic pollution of ecosystems by mining enterprises of the ore and Mountain Altai. Zapiski Gornogo instituta. 2013, vol. 203, pp. 155–159. [In Russ].

37. Matveeva V. A., Smirnov Y. D., Suchkov D. V. Industrial processing of phosphogypsum into organomineral fertilizer. Environmental Geochemistry and Health. 2021, no. 2, pp. 2–13. DOI:10.1007/s10653—021—00988-x.

38. Chang N. B., Xuan Z., Marimon Z., Islam K., Wanielista M. P. Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecological Engineering. 2013, vol. 54, pp. 66—76. DOI:10.1016/j. ecoleng.2013.01.019.

39. Lucke T., Walker C., Beecham S. Experimental designs of field-based constructed floating wetland studies: A review. Science of the Total Environmental. 2019, vol. 660, pp. 199–208. DOI:10.1016/J.SCITOTENV.2019.01.018.

40. Wang K., Hu Q., Wei Y., Yin H., Sun C., Liu G. Uptake Kinetics of NH+4 , NO−3 and H2PO−4 by Typha orientalis, Acorus calamus L., Lythrum salicaria L., Sagittaria trifolia L. and Alisma plantago-aquatica Linn. Sustainability. 2021, vol. 13, no. 434. DOI:10.3390/su13010434.

41. Vymazal J. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering. 2013, vol. 61. DOI:10.1016/j.ecoleng.2013.06.023.

42. Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia. 2011, vol. 674, no. 1, pp. 133–156. DOI:10.1007/s10750-011-0738-9.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.