Reclamation efficiency assessment at Nazarovo open pit mine using remote sensing

The major concern in open pit mining is damage and destruction of rich soil layer and plant communities. Removal of deep-seated rocks to ground surface exacerbates reclamation of mining-disturbed land later on. Reclamation is the most effective approach to returning the damaged land to the economic activity. The optimum method of land monitoring is the remote (space) sensing monitoring using the multispectral satellite images. The application of the remote monitoring in mining-damaged and reclaimed land assessment is discussed as a case-study of Nazarovo open pit mine. Using the Sentinel-2 satellite data with spatial resolution of 10 m/pixel for July and August 2020, the maps of the normalized difference vegetation index and the soil adjusted vegetation index are plotted together with the maps of difference between these indexes per survey dates and with the profile graphs of these indexes per each test site. Furthermore, the contents of chlorophyll and moisture in leaves are additionally calculated.

Keywords: Nazarovo open pit mine, reclamation, remote sensing data, unmanned air vehicle.
For citation:

Mikov L. S., Schastlivcev E. L., Androkhanov V. A. Reclamation efficiency assessment at Nazarovo open pit mine using remote sensing. MIAB. Mining Inf. Anal. Bull. 2023;(1):70-83. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_70.

Issue number: 1
Year: 2023
Page number: 70-83
ISBN: 0236-1493
UDK: 528.854: 631.618
DOI: 10.25018/0236_1493_2023_1_0_70
Article receipt date: 18.07.2022
Date of review receipt: 09.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

L.S. Mikov1, Junior Researcher, e-mail:,
E.L. Schastlivcev1, Dr. Sci. (Eng.), e-mail:,
V.A. Androkhanov, Dr. Sci. (Biol.), Institute of Soil Science and Agrochemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia, e-mail:,
1 Federal Research Center for Information and Computational Technologies, 650025, Kemerovo, Russia.


For contacts:

E.L. Schastlivcev, e-mail:


1. Androkhanov V. A., Gossen I. N., Ufimtsev V. N. The results of reclamation at the Nazarovsky coal mine. Biologicheskaya rekul'tivatsiya i monitoring narushennykh zemel': materialy XI Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem [Biological reclamation and monitoring of land monitoring: materials of the XI All-Russian Scientific Conference with international participation], Satka, Printonika, 2022, pp. 16—19. [In Russ].

2. Androkhanov V. A., Ovsyannikova S. V., Kurachev V. M. Tekhnozemy: svoystva, rezhimy, funktsionirovanie [Technozems: properties, modes, functioning], Novosibirsk, Nauka, 2000, 200 p.

3. Ufimtsev V. I., Strel'nikova T. O., Kupriyanov O. A. Structure of the living ground cover in pine forests on dumps of Kuzbass. Tomsk State University. Journal of Biology. 2018, no. 44, pp. 36—58. [In Russ]. DOI: 10.17223/19988591/44/3.

4. Kurachev V. M., Androkhanov V. A. Classification of soils in technogenic landscapes. Sibirskiy ekologicheskiy zhurnal. 2002, no. 3, pp. 255—261. [In Russ].

5. Sokolov D. A., Androkhanov V. A., Abakumov E. V. Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (review). Tomsk State University. Journal of Biology. 2021, no. 56, pp. 6—32. [In Russ]. DOI: 10.17223/19988591/56/1.

6. Korchagina T. V., Potapov V. P., Schastlivtsev E. L. Digital monitoring of the natural and man-made environment to ensure the environmental safety of mining enterprises. Ugol'. 2022, no. 6 (1155), pp. 59—67. [In Russ]. DOI:10.18796/0041-5790-2022-6-59-67.

7. Giniyatullina O. L., Potapov V. P., Mikov L. S. Method for assessing the geodynamic and geoecological state of coal mining enterprises based on the integrated processing of radar and multispectral images. MIAB. Mining Inf. Anal. Bull. 2017, no. S23, pp. 510—516. [In Russ]. DOI: 10.25018/0236-1493-2017-10-23-510-516.

8. Zenkov I., Izhmulkina E., Maglinets Yu., Yuronen Yu., Vokin V., Yurkovskaya G., Loginova E. Results of the study of ecosystem formation in coal mines in the western part of the central regions of Kuzbass using remote sensing resources. Ecology and Industry of Russia. 2018, no. 22(2), pp. 40—45. [In Russ]. DOI: 10.18412/1816-0395-2018-2-40-45.

9. Giniyatullina O. L., Schastlivtsev E. L., Kovalev V. A. Experience in the use of remote sensing of the earth in the tasks of geoecological monitoring of a coal-mining area. Regional'nye problemy distantsionnogo zondirovaniya Zemli: Materialy V Mezhdunarodnoy nauchnoy konferentsii [Regional problems of remote sensing of the Earth: Proceedings of the V International Scientific Conference], Krasnoyarsk, SFU, 2018, pp. 283—287. [In Russ].

10. Ali N., Fu X., Ashraf U., Chen J., Thanh H. V., Anees A., Riaz M. S., Fida M., Hussain M. A., Hussain S., Hussain W., Ahmed A. Remote sensing for surface coal mining and reclamation monitoring in the Central Salt Range, Punjab, Pakistan. Sustainability. 2022, vol. 14, article 9835. DOI: 10.3390/su14169835.

11. Alden M. Remote sensing techniques for monitoring coal surface mining and reclamation in the Powder River basin. Environmental Studies, 2009, 70 p.

12. Juanda E. T. Analysis vegetation change on coal mine reclamation using Normalized Difference Vegetation Index (NDVI). IOP Conference Series. Earth and Environmental Science. 2021, vol. 716, no. 1, article 012035. DOI: 10.1088/1755-1315/716/1/012035.

13. Buczyńska A. Remote sensing and GIS technologies in land reclamation and landscape planning processes on post-mining areas in the Polish and world literature. AIP Conference Proceedings. 2020, vol. 2209, article 040002. DOI: 10.1063/5.0000009.

14. Gatti A., Bertolini A. Sentinel-2 products specification document. Cannes, Thales Alenia Space, 2015, 496 p.

15. Ufimtsev V. I., Androkhanov V. A., Ovsyannikova S. V. The impact of a recultivation layer on the restoration of plant communities. VI International Scientific Conference «Problems of Industrial Botany of Industrially Developed Regions» 2021. 2021, article 00030.

16. Dwivedi R. S. Geospatial technologies for land degradation assessment and management. Boca Raton, CRC Press, 2019, 391 p.

17. Cherepanov A. S. Vegetation indices. Geomatica. 2011, no. 2, pp. 98—102. [In Russ].

18. Akiyanova F. Zh., Tkach K. A. Features of vegetative cover changes analyzing on SAVI within Kazakhstan section (from Khorgas and Dostyk to Aktau) of the international transport corridor. Gidrometeorologiya i ekologiya. 2017, no. 4, pp. 32—43. [In Russ].

19. Huete A. R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 1988, no. 25, pp. 295—309.

20. Jay S., Goretta N., Morel J., Maupas F., Bendoula R. Estimating leaf chlorophyll content in sugar beet canopies using millimeterto centimeter-scale reflectance imagery. Remote Sensing of Environment. 2017, vol. 198, pp. 173—186. DOI: 10.1016/j.rse.2017.06.008.

21. Zhang F., Zhou G. Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecology. 2019, vol. 19, no. 1, pp. 1—12. DOI: 10.1186/s12898-019-0233-0.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.