Toxicity estimate of heavy metals, metalloids and nonmetals contained in mineral mining waste

Mining activities lead to severe pollution of the environment with metals, metalloids and nonmetals. In the Caucasus, the largest induced pollution results from performance of Urup and Tyrnyauz mining and processing integrated works, Mizur concentration factory, as well as Electrozinc and Pobedit plants. Pollutants from these sources mostly accumulate in soil. The most wide-spread soil in the influence zone of the listed pollution sources is the brown forest earth. The article offers a comparative estimation of pollution hazard for 28 heavy metals, metalloids and nonmetals contained in mineral mining and processing waste by the rate of total depopulation of bacteria in the weakly unsaturated brown forest earth. Pollution was modeled on a laboratory scale. The cryptotoxic elements were entered as oxides at concentrations of 10 and 100 mg of an element per 1 kg of soil. The total number of bacteria was determined using direct luminescence microscopy. The cryptotoxic elements were ranked by their hazard for bacteria in the weakly unsaturated brown forest earth at the concentration of 10 mg/kg: Se > Te. The most hazardous pollutants for the earth bacteria appeared to be chromium, selenium, tellurium and silver.

Keywords: chemical pollution, soil, heavy metals, metalloids, nonmetals, biotesting, bacterial population.
For citation:

Evstegneeva N. A., Kolesnikov S. I., Minnikova T. V., Timoshenko A. N. Toxicity estimate of heavy metals, metalloids and nonmetals contained in mineral mining waste. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):73-85. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_73.

Acknowledgements:

The study was supported by the Russian Science Foundation (Grant No. 22-24-01041) in Southern Federal University.

Issue number: 5
Year: 2023
Page number: 73-85
ISBN: 0236-1493
UDK: 57.044; 631.46
DOI: 10.25018/0236_1493_2023_51_0_73
Article receipt date: 10.01.2023
Date of review receipt: 02.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

N.A. Evstegneeva1, Graduate Student, e-mail: evstegneeva@sfedu.ru, ORCID ID: 0000-0003-3133-7629,
S.I. Kolesnikov1, Dr. Sci. (Agric.), Professor, Head of Chair, e-mail: kolesnikov@sfedu.ru, ORCID ID: 0000-0001-5860-8420,
T.V. Minnikova1, Cand. Sci. (Biol.), Leading Researcher, e-mail: loko261008@yandex.ru, ORCID ID: 0000-0002-9453-7137,
A.N. Timoshenko1, Cand. Sci. (Biol.), Leading Researcher, e-mail: aly9215@mail.ru, ORCID ID: 0000-0001-5589-2171,
1 D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.

 

For contacts:

N.A. Evstegneeva, e-mail: evstegneeva@sfedu.ru.

Bibliography:

1. Petrov Yu. S., Khadzaragova E. A., Sokolov A. A., Sharipzyanova G. Kh., Taskin A. V. Acquisition, transmission and storage of information on production-induced cycle in mining and metallurgy: Outlines. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 178—188. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-178-188.

2. Golik V. I., Urumova F. M., Maslennikov S. A., Nebylova Ya. G. To the problem of environmental chemistration in the production of metal ores in mountain regions. Occupational Safety in Industry. 2020, no. 8, pp. 53—59. [In Russ]. DOI: 10.24000/0409-2961-2020-8-53-59.

3. Elokhin V. A. Geochemical transformation of soil in the influence zone of ash dump in 2006–2020. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 98—110. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_98.

4. Alborov I. D., Tedeeva F. G., Gutsaev F. H., Burdzieva O. G, Gegelashvili M. V. Effects of the mining sector on the quality of the living environment in mountainous terrains. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 32—39. [In Russ]. DOI: 10.25018/0236-1493-2020111-0-32-39.

5. Opekunova M. G., Somov V. V., Papyan E. E. Soil contamination in the impact zone of mining enterprises in the Bashkir Transural Region. Soil Science Faculty. 2017, no. 6, pp. 744— 758. [In Russ]. DOI: 10.7868/80032180X17060089.

6. Petrov Y. S., Sokolov A. A., Raus E. V. A mathematical model for estimating technogenic losses from the operation of mining enterprises. Sustainable Development of Mountain Territories. 2019, vol. 11, no. 4, pp. 554—559. [In Russ]. DOI: 10.21177/1998-4502-2019-11-4-554-559.

7. Chen L., Wang J., Beiyuan J., Guo X., Wu H., Fang L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines. A global metaanalysis. Science of the Total Environment. 2021, vol. 816, article 151556. DOI: 10.1016/j. scitotenv.2021.151556.

8. Kasemodel M. C., Sakamoto I. K., Varesche M. B. A., Rodrigues V. G. S. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment. 2019, vol. 675, pp. 367—379. DOI: 10.1016/j. scitotenv.2019.04.223.

9. Timofeev I., Kosheleva N., Kasimov N. Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region. A survey and risk assessment. Science of the Total Environment. 2018, vol. 642, pp. 63—76. DOI: 10.1016/j. scitotenv.2018.06.042.

10. Mayorova L. P., Cherentsova A. A., Krupskaya L. T., Golubev D. A., Kolobanov K. A. Assessment of manmade air pollution due to dusting at mine tailings storage facilities. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 5—20. [In Russ]. DOI: 10.25018/0236-1493-2021-10-5-20.

11. Li P., Lin C., Cheng H., Duan X., Lei K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicology and Environmental Safety. 2015, vol. 113, pp. 391—399. DOI: 10.1016/j.ecoenv.2014.12.025.

12. Chileshe M. N., Syampungani S., Festin E. S., Tigabu M., Daneshvar A., Odén P. C. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: implications for pollution risk and restoration. Journal of Forestry Research. 2020, vol. 31, no. 4, pp. 1283—1293. DOI: 10.1007/s11676-019-00921-0.

13. Kazapoe R. W., Amuah E. E. Y., Dankwa P., Ibrahim K., Mville B. N., Abubakari S., Bawa N. Compositional and source patterns of potentially toxic elements (PTEs) in soils in southwestern Ghana using robust compositional contamination index (RCCI) and k-means cluster analysis. Environmental Challenges. 2021, vol. 5, article 100248. DOI: 10.1016/j.envc.2021.100248.

14. Qiao D., Wang G., Li X., Wang S., Zhao Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere. 2020, vol. 248, article 125988. DOI: 10.1016/j.chemosphere.2020.125988.

15. Mihajlovic J., Rinklebe J. Rare earth elements in German soils. A review. Chemosphere. 2018, vol. 205, pp. 514—523. DOI: 10.1016/j.chemosphere.2018.04.059.

16. da Silveira Pereira W. V., Ramos S. J., Melo L. C. A., de Souza Braz A. M., Dias Y. N., de Almeida G. V., Fernandes A. R. Levels and environmental risks of rare earth elements in a gold mining area in the Amazon. Environmental Research. 2022, vol. 211, article 113090. DOI: 10.1016/j.envres.2022.113090.

17. Liu J., Wang L., Wang J., Zhang Q., Wei X., Lin Y., Xiao T. Quantification of smelterderived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence. Journal of Hazardous Materials. 2022, vol. 424, article 127594. DOI: 10.1016/j.jhazmat.2021.127594.

18. Atibu E. K., Lacroix P., Sivalingam P., Ray N., Giuliani G., Mulaji C. K., Poté J. High contamination in the areas surrounding abandoned mines and mining activities: an impact assessment of the Dilala, Luilu and Mpingiri rivers, Democratic Republic of the Congo. Chemosphere. 2018, vol. 191, pp. 1008—1020. DOI: 10.1016/j.chemosphere.2017.10.052.

19. Galhardi J. A., de Mello J. W. V., Wilkinson K. J. Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil. Environmental Geochemistry and Health. 2020, vol. 42, no. 11, pp. 3965—3981. DOI: 10.1007/s10653-020-00659-3.

20. Sun L. Guo D., Liu K., Meng H., Zheng Y., Yuan F., Zhu G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena. 2019, vol. 175, pp. 101—109. DOI: 10.1016/j.catena.2018.12.014.

21. Alborov I. D., Burdzieva O. G., Tedeeva F. G., Gegelashvili M. V. Ecological stress in nonferrous metal mining regions in the North Caucasus. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 18—31. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-18-31.

22. Golik V. I., Dmitrak Yu. V., Khadzaragova E. A., Plieva M. T. Evaluation of population and mine personnel health impacts of heavy metals with regard to local ecology. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 106—117. [In Russ]. DOI: 10.25018/0236-1493-2020-1110-106-117.

23. Wang L., Xie X., Li Q., Yu Z., Hu G., Wang X., Liu J. Accumulation of potentially toxic trace elements (PTEs) by native plant species growing in a typical gold mining area located in the northeast of Qinghai-Tibet Plateau. Environmental Science and Pollution Research. 2022, vol. 29, no. 5, pp. 6990—7000. DOI: 10.1038/s41598-022-17461-z.

24. Adimalla N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health. 2020, vol. 42, no. 1, pp. 59—75. DOI: 10.1007/s10653-019-00270-1.

25. Salpagarova S. I., Salpagarova Z. I. The environmental impacts of urupsky mining complex. Proceedings of Dagestan State Pedagogical University. Natural and exact sciences. 2018, vol. 12, no. 1, pp. 88—93. [In Russ]. DOI: 10.31161/1995-0675-2018-12-1-88-93.

26. Alborov I. D., Tedeeva F. G. Burdzieva O. G. Ecological aspects of the technogenic deposits preservation of non-ferrous metals in the North Caucasus. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 2, pp. 265—272. [In Russ]. DOI: 10.21177/1998-4502-2021-13-2-265-272.

27. Lemmel F., Maunoury-Danger F., Fanesi A., Leyval C., Cébron A. Soil properties French soils displaying an anthropisation gradient. Microbial Ecology. 2019, vol. 77, no. 4, pp. 993— 1013. DOI: 10.1007/s00248-018-1297-7.

28. Guo H., Nasir M., Lv J., Dai Y., Gao J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety. 2017, vol. 144, pp. 300—306. DOI: 10.1016/j.ecoenv.2017.06.048.

29. Luo Y., Pang J., Li C., Sun J., Xu Q., Ye J., Shi J. Long-term and high-bioavailable potentially toxic elements (PTEs) strongly influence the microbiota in electroplating sites. Science of the Total Environment. 2022, vol. 814, article 151933. DOI: 10.1016/j.scitotenv.2021.151933.

30. Sazykina M. A., Minkina T. M., Konstantinova E. Y., Khmelevtsova L. E., Azhogina T. N., Antonenko E. M., Sazykin I. S. Pollution impact on microbial communities composition in natural and anthropogenically modified soils of Southern Russia. Microbiological Research. 2022, vol. 254, article 126913. DOI: 10.1016/j.micres.2021.126913.

31. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition published in 2022 by the International Union of Soil Sciences (IUSS), Vienna, Austria, 2022, 234 p.

32. Barsova N., Yakimenko O., Tolpeshta I., Motuzova G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environmental Pollution. 2019, vol. 249, pp. 200—207. DOI: 10.1016/j.envpol.2019.03.020.

33. Dutta S., Datta A., Zaid A., Bhat J. A. Metalloids and their impact on the environment. Metalloids in plants: Advances and future prospects. 2020, pp. 19—26. DOI: 10.1002/97811194 87210.ch2.

34. Okonji S. O., Achari G., Pernitsky D. Environmental impacts of selenium contamination: a review on current-issues and remediation strategies in an aqueous system. Water. 2021, vol. 13, no. 11, article 1473. DOI: 10.3390/w13111473.

35. Devi G., Kushwaha A., Goswami L., Chakrabarty S., Kaur H., Sathe S. S., Sarma H. P. Toxicity assessment of fluoride-contaminated soil and wastewater in solanum tuberosum. Water, Air, & Soil Pollution. 2022, vol. 233, no. 7, pp. 1—14. DOI: 10.1007/s11270-022-05694-7.

36. Kazeev K. Sр., Kolesnikov S. I., Akimenko Yг. V., Dadenko E. V. Metody biodiagnostiki nazemnykh ekosistem [Methods of biodiagnostics of ter-restrial ecosystems], Rostov-na-Donu, Izd-vo YUFU, 2016, pp. 356.

37. Kolesnikov S., Minnikova T., Kazeev K., Akimenko Y., Evstegneeva N. Assessment of the ecotoxicity of pollution by potentially toxic elements by biological indicators of haplic chernozem of Southern Russia (Rostov region). Water, Air, and Soil Pollution. 2022, vol. 233, no. 1, article 18. DOI: 10.1007/s11270-021-05496-3.

38. Evstegneeva N. A., Kolesnikov S. I., Minnikova T. V., Timoshenko A. N., Tsepina N. I., Kazeev K. Sh. Comparative Assessment of the Toxicity of Chemical Elements by the Number of Bacteria in Sierosands. Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science. 2022, no. 3 (215), pp. 120—128. [In Russ]. DOI: 10.18522/1026-2237-2022-3-120-128.

39. Kolesnikov S. I., Popovich A. A., Kazeev K. Sh., Val’kov V. F. The influence of fluorine, boron, selenium, and arsenic pollution on the biological properties of ordinary chernozems. Eurasian Soil Science. 2008, vol. 41, no. 4, pp. 400—404. DOI: 10.1134/S1064229308040066.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.