Estimation of changes in density of iron ore concentrates under the effect of load versus height of stock piles

The article presents the results of laboratory tests on modeling the process of titanomagnetite concentrate compaction under loading. It is found that under the influence of applied loads, dispersed solid particles (concentrate) practically do not compact. The concentrate is compacted due to reduction (or complete removal) of gaseous or liquid phase from it. Removal of the liquid phase is associated with water seepage and can only occur if the compaction load (consolidation) is applied for a long time measured in months. The shortterm load effect (hours, days) leads to compaction of the concentrate owing to removal of the gaseous phase with the liquid phase remaining in the concentrate. The limit of the concentrate compaction under the short-term load effect is the complete removal of the gaseous phase and the transformation of the material from the three-phase system to the two-phase (solid– liquid). The nonlinear nature of changes in the density of the concentrate in a stock pile versus the load equivalent to the height of the overlying layer of this concentrate is established. The obtained research results allow estimating the change in the bulk density of the concentrate depending on stock pile fill, which is of great importance for making-out the process and commercial balances of a processing plant.

Keywords: density, iron ore concentrate, permeability, stock pile, load, layer height, compressibility coefficient, compaction, slump.
For citation:

Kantemirov V. D., Titov R. S. Estimation of changes in density of iron ore concentrates under the effect of load versus height of stock piles. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):178—191. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_178.


The article is based on the R&D project implemented within the framework of the Basic Research Program of the Governmental Academies of Sciences, Topic 1: Methods to Take into Account Transient Processes in Mining Deep-Seated Mineral Deposits of Complex Structure, No. 0405-2019-0005.

Issue number: 5
Year: 2021
Page number: 178-191
ISBN: 0236-1493
UDK: 622.7:622.341.1
DOI: 10.25018/0236_1493_2021_51_0_178
Article receipt date: 15.12.2020
Date of review receipt: 15.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Kantemirov V. D.1, Cand. Sci. (Eng.), Quality management sector chief,;
Titov R. S.1, senior researcher, Quality management sector,;
1 Institute of Mining of Ural branch of RAS, Ekaterinburg, Russia.


For contacts:

1. Ol’hovatenko V. E., Ryazanov N. S. Osnovy inzhenernoj geologii i mekhaniki gruntov [Fundamentals of engineering geology and soil mechanics]: [v 2 ch.]. Tomsk : Izd-vo Tomskogo gos. arhitektur.stroit. un-ta, 2005. 311 p. [In Russ]

2. Lojcyanskij L. G. Mekhanika zhidkostej i gaza [Mechanics of liquids and gases]. Moscow: Drofa, 2003. 840 p. [In Russ]

3. Barac N. I., Tuyakova A. K., Shirovatova E. A. Opredelenie deformacionnyh i prochnostnyh harakteristik gruntov: metodicheskie ukazaniya k laboratornym rabotam [Determination of deformation and strength characteristics of soils: methodological guidelines for laboratory work]. Omsk: Izd-vo SibADI, 2008. 36 p. [In Russ]

4. Boldyrev G. G., Sidorchuk V. F. Determination of mechanical properties of soils in a compression device with measurement of lateral stresses. Avtomatizirovannye tekh-nologii izyskanij i proektirovanie. 2003. no. 9—10. pp. 69—71. [In Russ]

5. Bulgakov A. G., Dyba V. P., Skibin G. M. Mekhanika gruntov v reshenii geotekhnicheskih zadach [Soil mechanics in solving geotechnical problems]. Novocherkassk: Nauka. Obrazovanie. Kul’tura, 2011. 326 p. [In Russ]

6. Grib S. I. Fizicheskie i mekhanicheskie harakteristiki gruntov. Metody opredeleniya: laboratornyj praktikum [Physical and mechanical characteristics of soils. Methods of determination: laboratory practice]. Krasnoyarsk: Izdatel’stvo Kras-GASA, 2004. 87 p. [In Russ]

7. Ivanov P. L. Grunty i osnovaniya gidrotekhnicheskih sooruzhenij [Soils and foundations of hydraulic structures]. Moscow: Vysshaya shkola, 1985. 352 p. [In Russ]

8. Malyshev M. V. Mekhanika gruntov. Osnovaniya i fundamenty (v voprosah i otvetah) [Mechanics of soils. Foundations and foundations (in questions and answers)]. Moscow: Izdatel’stvo Associaciya stroitel’nyh vuzov (ASV), 2015. 104 p. [In Russ]

9. Zercalov M. G. Mekhanika skal’nyh gruntov i skal’nyh massivov [Mechanics of rock soils and rock massifs]. Moscow: Yurisprudenciya, 2003. 184 p. [In Russ]

10. Belyakov N. A., Karasev M. A., Trushko V. L. Mekhanika sploshnoj sredy [Mechanics of a continuous medium]. Saint-Petersburg: Sankt-Peterburgskij gornyj universitet, 2019. 114 p. [In Russ]

11. Dashko R. E. Inzhenerno-geologicheskij analiz i ocenka vodonasyshchennyh glinistyh porod kak osnovaniya sooruzhenij [Engineering-geological analysis and evaluation of water-saturated clay rocks as the basis of structures]. Saint-Petersburg: Institut «PI Georekonstrukciya», 2015. 374 p. [In Russ]

12. Shapiro D. M. Nelinejnaya mekhanika gruntov [Nonlinear mechanics of soils]. Voronezh: Voronezhskij GASU, 2016. 123 p. [In Russ]

13. GOST 12248—2010 Grunty. Metody laboratornogo opredeleniya harakteristik prochnosti i deformiruemosti. vveden 2012.01.01. Moscow: Izd-vo FGBU Standartinform, 2011. 83 s. [In Russ]

14. Kozin V. Z. Oprobovanie na obogatitel’nyh fabrikah [Testing at processing plants]. Moscow: Nedra, 1988. 287 p. [In Russ]

15. Kozin V. Z. Oprobovanie mineral’nogo syr’ya [Testing of mineral raw materials]. Ekaterinburg: Izd-vo UGGU, 2011. 316 p. [In Russ]

16. Mashchenko A. V., Ponomarev A. B., Sychkina E. N. Special’nye razdely mekhaniki gruntov i mekhaniki skal’nyh gruntov [Special sections of soil mechanics and mechanics of rock soils]. Perm’: Izd-vo Perm. nac. issled. politekhn. un-ta, 2014. 176 p. [In Russ]

17. Kanji M. He M., L. R. e Sousa Soft Rock Mechanics and Engineering. Springer Na-ture Switzerland AG, 2020. 749 p. DOI: 10.1007/978—3-030—29477—9.

18. Xia-Ting Feng Rock Mechanics and Engineering Vol. 1: Principles. London: CRC Press, 2017. 784 p. DOI: 10.1201/9781315364261.

19. Xia-Ting Feng Rock Mechanics and Engineering Vol. 2: Laboratory and Field Testing. London: CRC Press, 2016. 646 p. DOI: 10.1201/9781315364254.

20. Xia-Ting Feng Rock mechanics and engineering Volume 3: Analysis, modeling &design. London: CRC Press, 2017. 928 p. DOI: 10.1201/b20402.

21. Debashish D., Abhiram K. V. Fundamentals and Applications of Rock Mechanics. NewDelhi: PHILearning, 2016. 412 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.