Fracture toughness under different temperature effects

The study addresses the fracture toughness KIC of rock sample from Pavlovskoe deposit, Novaya Zemlya archipelago, in cyclic freeze–thaw tests. The testing samples were half-cylinders with a cut made in the center of a sample in perpendicular to its diameter. From the cores with the diameter D = 63 mm, the disks with the thickness t = 25 mm were cut out as per ISRM. They were cut into two equal parts at the tolerable deviation from the centerplane not more than by 0.2 mm. The fracture-simulating cut depth a obeyed the condition 0,4 ≤ a/R ≤ 0,6 (R – the diskradius). The manufactured samples were saturated with water for 24 h and then were frozen. Freezing lasted for 6 hours in refrigerators in two regimes: at -20ºС and at -50ºС. After freezing, the halfcylinders were placed in tanks filled with water for not less than 2 h, up to total thawing. All in all, 10 and 20 cycles were carried out. The temperature erosion studies reveal a decrease in the fracture toughness of the rock samples. After 10 and 20 cycles of freezing at -20ºС, the samples show the decrease in the fracture toughness by 9% and 28%, respectively. Even lower temperature has a higher impact on the test parameter. For instance, after 10 and 20 cycles of freezing at -50ºС, the decrease in the fracture toughness of the samples reaches 23% and 32%, respectively.

Keywords: fracture toughness, tensile crack, freeze–thaw.
For citation:

Cherepetskaya E. B., Bezrukov V. I. Fracture toughness under different temperature effects. MIAB. Mining Inf. Anal. Bull. 2023;(1):49-58. [In Russ]. DOI: 10.25018/0236_ 1493_2023_1_0_49.

Acknowledgements:
Issue number: 1
Year: 2023
Page number: 49-58
ISBN: 0236-1493
UDK: 551.34
DOI: 10.25018/0236_1493_2023_1_0_49
Article receipt date: 08.11.2022
Date of review receipt: 18.11.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

E.B. Cherepetskaya1, Dr. Sci. (Eng.), Professor, e-mail: eb.cherepetskaya@misis.ru, ORCID ID: 0000-0002-9642-2149,
V.I. Bezrukov1, Student, e-mail: bezrukov.vi@misis.ru, ORCID ID: 0000-0001-6081-6616,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.I. Bezrukov, e-mail: bezrukov.vi@misis.ru.

Bibliography:

1. Ebrahimi R., Hosseini M., Taleb Вeydokhti A. Experimental study of effect of number of heating—cooling cycles on mode I and mode II fracture toughness of travertine. Theoretical and Applied Fracture Mechanics. 2022, vol. 117, article 103185. DOI: 10.1016/j.tafmec.2021.103185.

2. Li M., Liu X., Pan Y., Qiao S., Hou Z., Hao Z. Experimental studies on the effect of cyclic thermal shock and cooling methods on the mechanical properties and fracture behavior of prefabricated fissured sandstone. Theoretical and Applied Fracture Mechanics. 2022, vol. 122, article 103576. DOI: 10.1016/j.tafmec.2022.103576.

3. Deng Z., Zhan X., Zeng W., Yang S., Wu J. A degradation model of modeI fracture toughness of rock under freeze-thaw cycles. Theoretical and Applied Fracture Mechanics. 2021, vol. 115, article 103073. DOI: 10.1016/j.tafmec.2021.103073.

4. Zhelnin M. S., Kostina A. A., Plekhov O. A., Semin M. A., Brovka G. P. Numerical calculation of lateral pressure on frozen wall envelope. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 62—77. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_62.

5. Zhukov V. S. Estimating the strength and elasticity of rocks in the Dagi formation on the Sakhalin shelf. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 44—57. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-44-57.

6. Komolov V., Belikov A., Demenkov P. Research on load-bearing constructions behavior during pit excavation under «slurry wall» protection. Lecture Notes in Civil Engineering. 2022, vol. 180, pp. 313—323. DOI: 10.1007/978-3-030-83917-8_29.

7. Dudchenko O. L., Shibaev I. A., Ivanov P. N., Kravcov A. N. Development of geotechnical protective measures for strengthening a slope prone to landslide hazards. Topical Issues of Rational Use of Natural Resources. Proceedings of the International Forum-Contest of Young Researchers, 2018. 2019, pp. 147—152.

8. Shibaev I. A., Sas I. E., Bagriantcev D. M., Dudchenko O. L. Multivariate assessment of soil—building foundation interaction using PLAXIS software. Advances in Science, Technology and Innovation. 2018, pp. 341—343. DOI: 10.1007/978-3-030-01665-4_79.

9. Shibaev I. A., Sas I. E., Cherepetskaya E. B., Bagryantsev D. M. Substantiation of possible simplifications in soil–foundation interaction estimate. MIAB. Mining Inf. Anal. Bull. 2018, no. 9, pp. 152—157. [In Russ]. DOI: 10.25018/0236-1493-2018-9-0-152-157.

10. Shibaev I. A., Belov O. D., Sas I. E. Determination of dynamic and static elasticity modules of granite samples. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_5.

11. Prishchepa D. V. Substantiation of models of the stress-strain state of a fractured rock mass. Problems of Subsoil Use. 2017, no. 1, pp. 81—88. [In Russ]. DOI: 10.18454/2313-1586. 2017.01.081.

12. Sheshde E. A., Cheshomi A., Gharechelou S. Estimation of mode I static fracture toughness of carbonate rock using small rock fragments. Journal of Petroleum Science and Engineering. 2022, vol. 218, article 110980. DOI: 10.1016/j.petrol.2022.110980.

13. Kurlenya M. V., Mirenkov V. E. Influence of rock mass stress state on propagation direction of hydraulic fractures. MIAB. Mining Inf. Anal. Bull. 2019, no. 3, pp. 5—13. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-5-13.

14. Kashnikov Yu. A., Ashikhmin S. G., Kukhtinsky A. E., Shustov D. V. On the relationship of crack resistance coefficients and geophysical characteristics of rocks of hydrocarbon deposits. Journal of Mining Institute. 2020, vol. 241, pp. 83—90. [In Russ]. DOI: 10.31897/PMI.2020.1.83.

15. Kravcov A. N., Svoboda P., Pospchal V., Morozov D. V., Ivanov P. N. Assessment of longterm strength of rocks. Key Engineering Materials. 2017, vol. 755, pp. 62—64. DOI: 10.4028/ www.scientific.net/KEM.755.62.

16. Papanastasiou P. The effective fracture toughness in hydraulic fracturing. International Journal of Fracture. 1999, vol. 96, pp. 127—147. DOI: 10.1023/A:1018676212444.

17. Shibaev I. A., Vinnikov V. A., Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 125—134. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-125-134.

18. Kravcov A., Cherepetskaya E., Svoboda P., Blokhin D., Ivanov P., Shibaev I. Thermal infrared radiation and laser ultrasound for deformation and water saturation effects testing inlimestone. Remote Sensing. 2020, vol. 12, no. 24, article 4036. DOI: 10.3390/rs12244036.

19. Sun D., Rao Q., Wang S., Shen Q., Yi W. Shear fracture (Mode II) toughness measurement of anisotropic rock. Theoretical and Applied Fracture Mechanics. 2021, vol. 115, article 103043. DOI: 10.1016/j.tafmec.2021.103043.

20. Wei M., Dai F., Xu N., Zhao T. Stress intensity factors and fracture process zones of ISRMsuggested chevron notched specimens for mode I fracture toughness testing of rocks. Engineering Fracture Mechanics. 2016, vol. 168, Part a, pp. 174—189. DOI: 10.1016/j.engfracmech.2016.10.004.

21. Dai F., Xu Y., Zhao T., Xu N., Liu Y. Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests. International Journal of Rock Mechanics and Mining Sciences. 2016, vol. 88, pp. 49—60. DOI: 10.1016/j.ijrmms.2016.07.003.

22. Tutluoglu L., Keles C. Effects of geometric factors on mode I fracture toughness for modified ring tests. International Journal of Rock Mechanics and Mining Sciences. 2012, vol. 51, pp. 149—161. DOI: 10.1016/j.ijrmms.2012.02.004.

23. Amrollahi H., Baghbanan A., Hashemolhosseini H. Measuring fracture toughness of crystalline marbles under mode I and II and mixed mode I—II loading conditions using CCNBD and HCCD specimens. International Journal of Rock Mechanics and Mining Sciences. 2011, vol. 48, no. 7, pp. 1123—1134. DOI: 10.1016/j.ijrmms.2011.06.015.

24. Franklin J. A., Sun Zongqi, Atkinson B. K. Suggested methods for determining the fracture toughness of rock. International journal of rock mechanics and mining & geomechanics abstracts. 1988, vol. 25, no. 2, pp. 71—96.

25. Mostafavi M., McDonald S. A., Mummery P. M., Marrow T. J. Observation and quantification of three-dimensional crack propagation in poly-granular graphite. Engineering Fracture Mechanics. 2013, vol. 110, pp. 410—420. DOI: 10.1016/j.engfracmech.2012.11.023.

26. Fowell R. J. Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1995, vol. 32, no. 1, pp. 57—64. DOI: 10.1016/0148-9062(94)00015-U.

27. Kuruppu M. D., Obara Y., Ayatollahi M. R., Chong K. P., Funatsu T. ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen.Rock Mechanics and Rock Engineering. 2014, vol. 47, pp. 267—274. DOI: 10.1007/s00603-013-0422-7.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.