Assessment of lateral earth pressure coefficient and Poisson’s ratio in artificially damaged enclosing rock mass of the Noyon-Tologoy deposit

Efficient analysis of the rock mass behavior during construction of high dams and dumps depends on the reliable estimates of their mechanical properties. This research goal is to determine relative transverse strain of damaged rocks in the conditions as close to the full-scale conditions as possible. The difficulty of the lab-scale tests in this case is connected with the incommensurability between sizes of lumps of rocks and test cells, as well as with the influence of the size effect. With this end in view, a large test bench with power frames was used to record the reaction forces transmitted by hydraulic jacks to damaged rocks filled in the test cell. The necessary equipment—press tools, shear rings, trolleys, plates, etc.—was manufactured for the tests. The relative transverse strain was assessed using the novel original equipment and methods protected by an invention patent. Thus, the most important mechanical properties of damaged rocks were obtained and used for high dam design at tailing ponds. The test results provide information on the influence of fractional composition of rocks on lateral earth pressure coefficient and Poisson’s ratio at the same vertical pressure. The traditional-way setting of a constant Poisson’s ratio in the geomechanical calculations for rock masses of different granulometric composition requires an appropriate correction.

Keywords: coarse-grained soils with deformation structure, field tests, granulometric composition, tape test, lateral pressure ratio, Poisson’s ratio, rocks’ mechanical properties.
For citation:

Babello V. A., Beydin A. V. Assessment of lateral earth pressure coefficient and Poisson’s ratio in artificially damaged enclosing rock mass of the Noyon-Tologoy deposit. MIAB. Mining Inf. Anal. Bull. 2021;(3-2):5-17. [In Russ]. DOI: 10.25018/0236_1493_2021_32_0_5.

Issue number: 3
Year: 2021
Page number: 5-17
ISBN: 0236-1493
UDK: 622.1:550.82
DOI: 10.25018/0236_1493_2021_32_0_5
Article receipt date: 20.11.2020
Date of review receipt: 23.12.2020
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Babello V. A.1, Dr. Sci. (Eng.), Professor;
Beydin A. V.1, Cand. Sci. (Eng.), Assistant Professor, e-mail:;
1 Transbaikal State University, Chita, Russia.


For contacts:

1. Zhang Q., Upadhyaya S. K., Liao Q., Li X. Determination of in-situ engineering properties of soil using an inverse solution technique and limited field tests. Journal of Terramechanics. 2018. Vol. 79. no. 10. Pp. 69—77. DOI: 10.1016/j.jterra.2018.07.001.

2. Babello V. A., Beydin A. V., Ovseychuk V. A., Smolich S. V. Assessment of rock mass behavior based on its geology analysis and stress state modeling. MIAB. Mining Inf. Anal. Bull. 2019. no. 12. Pp. 41—54. [In Russ].

3. Jaeger J. C., Cook N. G.W., Zimmerman R. W. Fundamentals of Rock Mechanics. 4th ed., Oxford, Blackwell, 2007, 475 p.

4. Shabaev S. N., Krupina N. V., Shalamanov V. A., Martel N. A., Shtark A. I. Oblique shear method for determining strength performance of pre-compacted very coarse soils. Izvestiya Ural’skogo gosudarstvennogo gornogo universiteta. 2020. no. 3. Pp. 115—122. DOI: 10.21440/2307-2091-2020-3-115-122. [In Russ].

5. Patel A., Ingale R., Bhanarkar K. B. Effect of Compaction States and the Confining Pressure on Poisson’s Ratio of Stratified and Non-Stratified Soils. Arabian Journal for Science and Engineering. 2018. Vol. 43. no. 4. Pp. 1983—1999. DOI: 10.1007/s13369— 017—2846-y.

6. Boldyrev G. G., Melnikov A. V., Merkulyev E.V, Novichkov G. A. Comparison of methods of laboratory and field soil testing. Inzhenernye izyskaniya. 2013. no. 14. Pp. 28—46. [In Russ].

7. Eremin G. M. Increasing of accuracy and reliability of definition of strength characteristics of rocks and their properties during rock massif deformations. MIAB. Mining Inf. Anal. Bull. 2000, no. 9, Pp. 31—33. [In Russ].

8. Choo H., Zhao Q., Burns S. E., Sturm T. W., Hong S. H. Laboratory and theoretical evaluation of impact of packing density, particle shape, and uniformity coefficient on erodibility of coarse‐grained soil particles. Earth Surface Processes and Landforms. 2020. Vol. 45. no. 1. Pp. 1499—1509. DOI: 10.1002/esp.4825.

9. Sainov M. P. Deformation parameters of macrofragment soils in soil dams // Stroitel’stvo: nauka i obrazovanie. 2014. no. 2. P. 2. [In Russ].

10. Babello V. A. Author’s certificate USSR 1604917, 07.11.1990. [In Russ]

11. Babello V. A. Patent RU 2276343, 10.05.2006. [In Russ]

12. Panyukov P. N., Vereshchagin N. P., Dobrov E. M., Kravchuk S. V. Metodicheskie ukazaniya po opredeleniyu deformatsionnykh, prochnostnykh i fil’tratsionnykh kharakteristik gornykh porod v stabilometrakh [Methodical guidances for the definition of deformation, surface and filtration characteristic of rocks in stabilometers], Belgorod, VIOGEM, 1973, 67 p. [In Russ]

13. Meng F., Zhang Js., Chen Xb., Wang Qy. Deformation characteristics of coarsegrained soil with various gradations. Journal of Central South University. 2014. Vol. 21. no. 6. Pp. 2469—2476. DOI: 10.1007/s11771-014-2201-3.

14. Pham Duc Phong, Su Q., Zhou C.-B., Vu Anh-Tuan, Lam H.-H. Deformation and strength characteristics of graded gravel by large-scale triaxial tests. Electronic Journal of Geotechnical Engineering. 2015. Vol. 20. no. 1. Pp. 5913—5925.

15. Sorokina G. V. Rekomendatsii po metodam opredeleniya koeffitsientov bokovogo davleniya i poperechnogo rasshireniya glinistykh gruntov [Recommendations for the methods of definition of coefficients of lateral pressure and lateral expansion of clayey soils], Moscow, NIIOSP, 1978, 31 p. [In Russ]

16. GOST 12248—2010. Grunty. Metody laboratornogo opredeleniya kharakteristik prochnosti i deformiruemosti [GOST 12248—2010. Soils. Laboratory methods for determining the strength and strain characteristics], Moscow, Standartinform, 2011, 82 p. [In Russ]

17. Bugrov A. K., Narbut R. M., Sipidin V. P. Issledovanie gruntov v usloviyakh trekh odnoosnogo szhatiya. 2-e izd., isp. i dop. [Soil investigation in the conditions of triaxial compression. 2nd ed., rev. and enl.]. Leningrad, Stroyizdat, 1987, 184 p. [In Russ]

18. Chen S., Kong L., Xu G. An effective way to estimate the Poisson’s ratio of silty clay in seasonal frozen regions. Cold Regions Science and Technology. 2018. Vol. 154. no. 10. Pp. 74—84. DOI: 10.1016/j.coldregions.2018.06.003.

19. Ziangirov R. S., Kalbergenov R. G. Assessment of deformation properties of macrofragmental soils. Inzhenernaya geologiya. 1987, no. 3, Pp. 107—118. [In Russ]

20. Boldyrev G. G., SkopintsevD. G. On expedience of developing a national standard of «Compression soil testing with measurement of lateral stresses». Inzhenernaya geologiya. 2015, no. 1, Pp. 20—24. [In Russ]

21. Abukhanov A. Z. Mekhanika gruntov: ucheb. posobie [Soil mechanics: tutorial], Rostov-on-Don, Feniks, 2006, 352 p. [In Russ]

22. Lizunkin V. M., Babello V. A., Lizunkin M. V., Beydin A. V. Determination of Poisson’s ratio in crushed hard rocks of various grain-size composition. Gornyi zhurnal. 2017. no. 2. Pp. 45—50. DOI: 10.17580/gzh.2017.02.08. [In Russ].

23. Babello V. A., Beydin A. V., Lizunkin V. M., Lizunkin M. V. Patent RU 2634312, 25.10.2017. [In Russ]

24. Das В. M., Sivakugan N., Atalar C. Maximum and minimum void ratios and median grain size of granular soils: their importance and correlations with material properties. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering. Near East Universaty, Nicosia, North Cyprus, 2012.

25. Spravochnik po obogashcheniyu rud. Podgotovitel’nye protsessy. Pod red. O. S. Bogdanova, V. A. Olevskogo. 2-e izd., pererab. i dop. [Handbook for the beneficiation of ores. Preparatory processes. Bogdanov O.S, Olevskiy V. A. (Ed.). 2nd ed., rev. and enl.], Мoscow, Nedra, 1982, 366 p. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.