Landslide hazard assessment in preliminary exploration of mineral deposits in north-eastern Cuba

In the northeastern region of Cuba, the landslides are frequent in areas with mineral deposits in exploitation and prospective areas of mineral deposits. The assessment of the threat of landslides is of great importance for the future projection of geological exploration tasks and for the safety in the extraction of mineral resources. A statistical model, integrated with 6 predictors, was presented to estimate the threat of landslides in northeastern Cuba. The predictors analyzed were average annual rainfall, slope angle, elevation, soil type, distance to faults, and rock type. The model was developed using the multinomial logistic regression method. To validate the model, an inventory of landslides in the area was used. The results showed that, for the data set used to establish the model, the predictor variables "Average annual rainfall", "Slope angle" and "Rock type" have statistically significant effects on the change in the hazard category. The adjusted statistical model showed that landslides have a high probability of occurring in the “High” and “Very High” danger zones, in the northeast of Cuba and in its exploitation zones and prospective areas.

Keywords: multinomial logistic regression, landslides, landslide hazard, predictors, northeastern Cuba, perspective areas, mineral deposits, statistical model, soil deformation, mining.
For citation:

Pospehov G. B., Savón-Vaciano Yusmira Landslide hazard assessment in preliminary exploration of mineral deposits in north-eastern Cuba. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):178-192. DOI: 10.25018/0236_1493_2024_121_0_178.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 178-192
ISBN: 0236-1493
UDK: 624.131.1
DOI: 10.25018/0236_1493_2024_121_0_178
Article receipt date: 17.06.2024
Date of review receipt: 18.09.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

G.B. Pospehov1, Cand. Sci. (Geol. Mineral.), Head of Laboratory, e-mail: pospehov@spmi.ru, ORCID ID: 0000-0001-9090-5150,
Yusmira Savón-Vaciano1, Graduate Student, e-mail: yusmirasvaciano@gmail.com, ORCID ID: 0000-0002-9640-8478,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

G.B. Pospehov, e-mail: pospehov@spmi.ru.

Bibliography:

1. Khan M., He X., Farid A., Song D., Li Z., Tian X., Ni M. A novel geophysical method for fractures mapping and risk zones identification in a coalmine, Northeast, China. Energy Reports. 2021, vol. 7, pp. 3785—3804. DOI: 10.1016/j.egyr.2021.06.071.

2. Wang X., Xu Z., Sun Y., Zheng J., Zhang C., Duan Z. Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush. International Journal of Mining Science and Technology. 2021, vol. 31, no. 5, pp. 853—866. DOI: 10.1016/j.ijmst.2021.07.012.

3. Protosenya A. G., Demenkov P. A., Trushko O. V., Verbilo P. E. Justification of safe plugging options for subway tunnels flooded in an accident based on risk assessment. International Journal of Applied Engineering Research. 2016, vol. 11. pp. 7897—7906. EDN XFICUV.

4. Gridina E. B., Borovikov D. O. Improving the safety of the working personnel of a quarry located in difficult mining and geological conditions of the Far North. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 149—163. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_149. EDN XCPLQV.

5. Fleurisson J. A. Slope design and implementation in open pit mines: Geological and geomechanical approach. Procedia Engineering. 2012, vol. 46, pp. 27—38. DOI: 10.1016/j.proeng.2012. 09.442.

6. Rimélé A., Dimitrakopoulos R., Gamache M. A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty. Resources Policy. 2020, vol. 65, article 101570. DOI: 10.1016/j.resourpol.2019.101570.

7. Ponomarenko M. R., Kutepov Y. I. Mining complexity assessment to substantiate deformation monitoring at open pit mines. Journal of Mining Science. 2021, vol. 57, no. 6, pp. 986—994. DOI: 10.1134/S1062739121060119.

8. Lu K., Cao Z., Hou M., Jiang Z., Shen R., Wang Q., Liu J. The mechanism of earthquake. International Journal of Modern Physics B. 2018, vol. 32, no. 7, article 1850080. DOI: 10.1142/ S021 7979218500807. EDN YEZCKD.

9. Sarkar R., Dorji K. Determination of the probabilities of landslide events—A case study of Bhutan. Hydrology. 2019, vol. 6, no. 2, article 52. DOI: 10.3390/hydrology6020052.

10. Dikshit A. Sarkar R., Pradhan B., Acharya S., Dorji K. Estimating rainfall thresholds for landslide occurrence in the Bhutan Himalayas. Water. 2019, vol. 11, article 1616. DOI: 10.3390/w11081616.

11. Volohov E. M., Kozhukharova V. K., Britvin I. A., Savkov B. M., Zherlygina E. S. Assessment of impact of mining operations on surface infrastructure. MIAB. Mining Inf. Anal. Bull. 2023, no. 8, pp. 72—93. [In Russ]. DOI: 10.25018/0236_1493_2023_8_0_72. EDN JNUAAY.

12. Martinello C., Delchiaro M., Iacobucci G., Cappadonia C., Rotigliano E., Piacentini D. Exploring the geomorphological adequacy of the landslide susceptibility maps: A test for different types of landslides in the Bidente river basin (northern Italy). Catena. 2024, vol. 238, article 107835. DOI: 10.1016/j.catena.2024.107835.

13. Sun X., Chen G., Yang X., Xu Z., Yang J., Lin Z., Liu Y. A process-oriented approach for identifying potential landslides considering time-dependent behaviors beyond geomorphological features. Journal of Rock Mechanics and Geotechnical Engineering. 2023, vol. 6, no. 3, pp. 961—978. DOI: 10.1016/j.jrmge.2023.05.014.

14. Blishchenko A. A. The use of geodetic devices in open-pit mining operations, the trend of unmanned technologies application. Colloquium-Journal. 2020, no. 14-2(66), pp. 4—5. [In Russ]. DOI: 10.24411/2520-6990-2020-11902. EDN DZNLRJ.

15. Kulikova E. Yu., Polyankin A. G., Potokina A. M. Specifics of geotechnical risk control in the design of underground structures. Journal of Mining Institute. 2023, vol. 264, pp. 895—905. [In Russ]. EDN DGEAGK.

16. Petrova T. A., Rudzisha E., Alekseenko A. V., Bech J., Pashkevich M. A. Rehabilitation of disturbed lands with industrial wastewater sludge. Minerals. 2022, no. 12, pp. 376—376. DOI: 10.3390/ min12030376.

17. Yang B., Liu Z., Lacasse S., Liang X. Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining. Journal of Rock Mechanics and Geotechnical Engineering. 2024, vol. 12, no. 3, article 376. DOI: 10.1016/j.jrmge.2023.09.030.

18. Vystrchil M. G., Gusev V. N., Sukhov A. K. A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey. Journal of Mining Institute. 2023, vol. 262, pp. 562—570. [In Russ]. EDN SZOFVD.

19. Ponomarenko M. R., Kutepov Yu. I. Using the typification of mining-engineering facilities to substantiate deformation monitoring of opencast mining. News of the Ural State Mining University. 2020, no. 4(60), pp. 115—122. DOI: 10.21440/2307-2091-2020-4-115-122. EDN PSYLXG.

20. Valkov V. A., Vinogradov K. P., Valkova E. O., Mustafin M. G. Creating highly informative rasters based on laser scanning and aerial photography data. Geodesy and Cartography. 2022, vol. 83, no. 11, pp. 40—49. [In Russ]. DOI: 10.22389/0016-7126-2022-989-11-40-49.

21. Liu Q., Tang A., Huang D., Huang Z., Zhang Bin., Xu X. Total probabilistic measure for the potential risk of regional roads exposed to landslides. Reliability Engineering & System Safety. 2022, vol. 228, article 108822. DOI: 10.1016/j.ress.2022.108822.

22. Pradhan B., Lee S. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides. 2010, vol. 7, pp. 13—30. DOI: 10.1007/ s10346-009-0183-2.

23. Chowdhury M. S., Rahaman M. N., Sheikh M. S., Sayeid M. A., Mahmud K. H., Hafsa B. GISbased landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon. 2024, vol. 10, no. 1, article e23424. DOI: 10.1016/j.heliyon.2023.e23424.

24. Chan H. C. Chang C. C., Chen P. A., Lee J. T. Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan. Catena. 2019, vol. 176, pp. 419—429. DOI: 10.1016/j.catena.2019.01.030.

25. Pospehov G. B., Savón Yu., Moseykin V. V. Landslide susceptibility zonation using the analytical hierarchy process. A case study of Guantanamo Province. MIAB. Mining Inf. Anal. Bull. 2024, no. 1, pp. 125—145. DOI: 10.25018/0236_1493_2024_1_0_125.

26. Glazunov V. V., Burlutsky S. B., Shuvalova R. A., Zhdanov S. V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data. Journal of Mining Institute. 2022, vol. 257, pp. 771—782. [In Russ]. DOI: 10.31897/PMI.2022.86.

27. Farahbakhsh E., Maughan J., Müller R. D. Prospectivity modelling of critical mineral deposits using a generative adversarial network with oversampling and positive-unlabelled bagging. Ore Geology Reviews. 2023, vol. 162, article 105665. DOI: 10.1016/j.oregeorev.2023.105665.

28. Yaelsy C., Cobas L. Legislación ambiental y minera en Cuba. Aciertos y desaciertos. Revista Ciencia Juridica y Política. 2021, vol. 7, no. 13, pp. 146—164. DOI: 10.5377/rcijupo.v7i13.11913.

29. Pospehov G. B., Savón Y., Delgado R., Castellanos E., Peña A. Inventory of landslides triggered by hurricane Matthews in Guantánamo, Cuba. Geography, Environment, Sustainability. 2023, vol. 16, no 1, pp. 55—63. DOI: 10.24057/2071-9388-2022-133.

30. Rahmani S. R., Libohova Z., Ackerson J. P., Schulze D. G. Estimating natural soil drainage classes in the Wisconsin till plain of the Midwestern U. S.A. based on lidar derived terrain indices: Evaluating prediction accuracy of multinomial logistic regression and machine learning algorithms. Geoderma Regional. 2023, vol. 35, article e00728. DOI: 10.1016/j.geodrs.2023.e00728.

31. Kempen B., Brus D. J., Heuvelink G. B. M., Stoorvogel J. J. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma. 2009, vol. 151, no.3, pp. 311—326. DOI: 10.1016/j.geoderma.2009.04.023.

32. Abdel-Kader F. H. Digital soil mapping at pilot sites in the northwest coast of Egypt: A multinomial logistic regression approach. The Egyptian Journal of Remote Sensing and Space Science. 2011, vol. 14, no. 1, pp. 29—40. DOI: 10.1016/j.ejrs.2011.04.001.

33. Biancardo S.A., Intignano M., Viscione N. Procedural modeling-based BIM approach for railway. Journal of Advanced Transportation. 2021, vol. 2021, article 8839362. DOI: 10.1155/2021/8839362. EDN FNQXPG.

34. Chepyzhova A. V., Pravdina E. A., Lepikhina O. Y. Comparative evaluation of the effectiveness of the laser scanning and aerial photography systems using unmanned aerial vehicles. Journal of Physics: Conference Series. 2019, vol. 1333, no. 3, article 032064. DOI 10.1088/1742-6596/1333/3/032064. EDN MYWWLK.

35. Loginov D. S. Web technologies in cartographic support of geological exploration. Proceedings of the ICA. 2021, vol. 4, article 68. DOI: 10.5194/ica-proc-4-68-2021.

36. Kuzin A. A., Filippov V. G. (2024) Method for determining the plan view coordinates and height of the working benchmark on a landslide with forced inclinations of the pole from the plumb position. Geodesy and Cartography. 2024, no. 9, pp. 2—11. [In Russ]. DOI: 10.22389/0016-7126-2024-1011-92-11.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.