Bibliography: 1. The state (national) report on the status and use of lands of the Russian Federation in 2019. Moscow, 2020.
2. Rybak J., Khayrutdinov, M. M., Kuziev, D. A., Kongar-Syuryun, Ch. B., Babyr, N. V. (2022). Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute, 253, 61−70. DOI: 10.31897/PMI.2022.2.
3. Alekseenko, V. A., Bech, J., Alekseenko, A. V., Shvydkaya, N. V., Roca, N. (2018). Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. J. Geochemical Explorer, 184, 261−270. DOI:10.1016/j.gexplo.2017.06.003.
4. Rybak, J., Kongar-Syuryun, C., Tyulyaeva, Y., Khayrutdinov, A. M. (2021). Creation of backfill materials based on industrial waste. Minerals, 11(7), 739. DOI: 10.3390/ min11070739.
5. Nash, W. L., Daniels, W. L., Haering, K. C., Burger, J. A., Zipper, C. E. (2016). Longterm Effects of Rock Type on Appalachian Coal Mine Soil Properties. J. Environ. Qual, 45(5), 1597−1606. DOI: 10.2134/jeq2015.10.0540.
6. Alekseenko, A. V., Drebenstedt, C, Bech, J. (2022). Assessment and abatement of the eco-risk caused by mine spoils in the dry subtropical climate. Environmental Geochemistry and Health, 44(6), 1581−1603. DOI:10.1007/s10653−021−00885−3.
7. Halecki, W., Klatka, S. (2021). Application of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environmental Management, 67(15), 822−832. DOI:10.1007/s00267−020−01422−1.
8. Khordan, M. M., Bek, D., Garsiya-Sanches, E., Garsiya-Orenes, F. (2016). Bulk density and aggregate stability assays in percolation columns. Journal of Mining Institute, 222, 877. DOI: 10.18454/pmi.2016.6.877.
9. Kelessidis, A., Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32 (6), 1186−1195. DOI:10.1016/j.wasman.2012.01.012.
10. Smirnov, Y. D., Suchkova, M. V. (2019). Beneficial use of sewage sludge incineration ash in the national economy. Water and ecology: problems and solutions, 3(79), 16–25. DOI: 10.23968/2305−3488.2019.24.3.16−25.
11. Matveeva, V. A., Smirnov, Y. D., Suchkov, D. V. (2021). Industrial processing of phosphogypsum into organo-mineral fertilizer. Environmental Geochemistry and Health, 2, 2−13. DOI:10.1007/S10653−021−00988-X.
12. Jin, X. (2021). High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geoscience and Remote Sensing Magazine, 9 (1), 200−231. DOI: 10.1109/MGRS.2020.2998816.
13. Pashkevich, M. A., Petrova, T. A., Rudzisha, E. (2019). Lignin sludge application for forest land reclamation: feasibility assessment. Journal of Mining Institute, 235, 106. DOI: 10.31897/pmi.2019.1.106.
14. Elsayed, S., Barmeier, G., Schmidhalter, U. (2018). Passive Reflectance Sensing and Digital Image Analysis Allows for Assessing the Biomass and Nitrogen Status of Wheat in Early and Late Tillering Stages, 9, 1−15. DOI: 10.3389/fpls.2018.01478.
15. Sunoj, S., McRoberts, K. C., Benson, M., Ketterings, Q. M. (2021). Digital image analysis estimates of biomass, carbon, and nitrogen uptake of winter cereal cover crops. Computers and Electronics in Agriculture, 184, 106093. DOI: 10.1016/j.compag.2021.106093.
16. Bumgarner, N. R., Miller, W. S., Kleinhenz, M. D. (2012). Digital image analysis to supplement direct measures of lettuce biomass. Horttechnology, 22 (4), 547−555. DOI: 10.21273/HORTTECH.22.4.547.
17. Laxman, R. H., Hemamalini, P., Bhatt, R. M., Sadashiva, A. T. (2018). Non-invasive quantification of tomato (Solanum Lycopersicum L.) plant biomass through digital imaging using phenomics platform. Indian Journal of Plant Physiology, 23(2), 369−375. DOI: 10.1007/s40502−018−0374−8.
18. Korotaeva A. E., Pashkevich M. A. Spectrum survey data application in ecological monitoring of aquatic vegetation. MIAB. Mining Inf. Anal. Bull. 2021;(5–2):231-244. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_231.
19. Tikhonova S. A., Struchkova G. P., Kapitonova T. A. Manmade pollution assessment in water bodies in Yakutia using color response curves and satellite images. MIAB. Mining Inf. Anal. Bull. 2021;(12–1):213-222. [In Russ]. DOI: 10.25018/0236_1493_2021_121_0_213.
20. Chianucci, F., Lucibelli, A., Dell’Abate, M. T. (2018). Estimation of ground canopy cover in agricultural crops using downward-looking photography. Biosystems Engineering, 169, 209−216. DOI:10.1016/j.biosystemseng.2018.02.012.
21. Xu, D., Pu, Y., Guo, X. (2020). A Semi-Automated Method to Extract Green and Non-Photosynthetic Vegetation Cover from RGB Images in Mixed Grasslands. Sensors, 20 (23), 6870. DOI:10.3390/s20236870.
22. Xiong, Y., West, C. P., Brown, C. P., Green, P. E. (2019). Digital Image Analysis of Old World Bluestem Cover to Estimate Canopy Development. Agron. J. 111, 1247−1253. DOI:/10.2134/agronj2018.08.0502.
23. Dinalankara, S. (2018). Vision-Based Automated Biomass Estimation of Fronds of Salvinia molesta. 2018 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), 1−6. DOI:10.1109/ICIAFS.2018.8913395.
24. Hu, B., Bennett, M. A., Kleinhenz, M. D. (2016). A new method to estimate vegetable seedling Vigor, piloted with tomato, for use in grafting and other contexts. Horttechnology 26, 767−775. DOI: 10.1109/ICIAFS.2018.8913395.
25. Huang, W., Su, X., Ratkowsky, D. A., Niklas, K. J., Gielis, J., Shi, P. (2019). The scaling relationships of leaf biomass vs. leaf surface area of 12 bamboo species. Global Ecology and Conservation, 20. DOI:10.1016/j.gecco.2019.e00793.