Applicability of permanent-magnet synchronous motors in mobile top-up backfill units

Authors: Efimova Yu. B.

The article illustrates application perspectives of low-power backfill pumps in topping up process cavities formed in underground mines after completion of backfill. Amongst the linear and rotating motors used in pumps, the most effective motors are the synchronous motors with permanent magnet rotors made of rare earth alloys. The principal advantages of such motors when operated in a mine are their manufacturability in explosion-proof and waterproof designs, and the possibility of their power supply from both harmonic voltage sources and accumulator batteries affordable in mining conditions. Numerical modeling was used for the analysis of a battery-fed synchronous motor rotor at a voltage of 12 V. The rare earth magnet alloy N40 was selected, as well as the number and shape of permanent magnets were chosen to be attached on the rotor to ensure the required value and the sine shape of excitation flux with a view to creating an electromagnetic torque Mmax = 0.02 Nm on the shaft, which was conformable with the capacities effective in top-up backfill. It is concluded that such type motors are promising as the cost of the usable materials decreases.

Keywords: numerical modeling, mobile top-up backfill unit, under-filled cavities, flow and head pressure characteristics, synchronous motor, permanent magnets, low-power pump, smooth winding.
For citation:

Efimova Yu. B. Applicability of permanent-magnet synchronous motors in mobile top-up backfill units. MIAB. Mining Inf. Anal. Bull. 2025;(2):170-181. [In Russ]. DOI: 10.25018/0236_1493_2025_2_0_170.

Acknowledgements:
Issue number: 2
Year: 2025
Page number: 170-181
ISBN: 0236-1493
UDK: 622.012.7,621.313
DOI: 10.25018/0236_1493_2025_2_0_170
Article receipt date: 28.06.2024
Date of review receipt: 30.09.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

Yu.B. Efimova, Cand. Sci. (Eng.), Assistant Professor, Novosibirsk State Technical University, Novosibirsk, 630073, Russia, e-mail: u_b_efimova@mail.ru ORCID ID: 0000-0002-9536-9710.

 

For contacts:
Bibliography:

1. Aglyukov H. I. Rock pressure management with the construction of high-density artificial massifs. Minerals and Mining Engineering. 2004, no. 5, pp. 9—15. [In Russ].

2. Trubetskoy K. N., Kaplunov D. R., Rylnikova M. V. Principles and methodological basis for the formation of the new technological system of sustainable development of mining enterprises of Russia with the underground method of ore extraction. Mining sciences: fundamental and applied issues. 2018, vol. 5, no. 1, pp. 127—134. [In Russ].

3. Vasilyeva M. A. Magnetic peristaltic pumps for backfill. Eurasian Mining. 2019, no. 1, pp. 34–36. DOI: 10.17580/em.2019.01.08.

4. Kaplunov D. R. Mining with backfilling using movable backfill preparation plant. Miner's week — 2015: reports of the XXIII international scientific symposium, Moscow, 2015, pp. 385—390.

5. Kaplunov D. R., Rylnikova M. V., Radchenko D. N., Korneev I. V. Mobile stowing complexes in the middle development of ore deposits with backfilling of mined-out premises. Gornyi Zhurnal. 2013, no. 2, pp. 101—104. [In Russ].

6. Vasilyeva M. A. Magnetic peristaltic pumps for stowing operations. News of the Ural State Mining University. 2020, no. 1, pp. 150—155. [In Russ]. DOI: 10.21440/2307-2091-2020-1-150-155.

7. Vasilyeva M. A. Equipment for generating running magnetic fields for peristaltic transport of heavy oil. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM 2017), Saint-Petersburg, 2017, pp. 1—4. DOI: 10.1109/ICIEAM.2017.8076356.

8. Di J., Fletcher J. E., Li W., Xu H., Fan Y. Transient analysis of line-start permanent magnet linear synchronous motors. IEEE Transactions on Energy Conversion. 2021, vol. 36, no. 4, pp. 3365—3375. DOI: 10.1109/TEC.2021.3077581.

9. Hu H. Z., Zhao J., Liu X. D., Guo Y. G. Magnetic field and force calculation in linear permanentmagnet synchronous machines accounting for longitudinal end effect. IEEE Transactions on Industrial Electronics. 2016, vol. 63, no. 12, pp. 7632—7643. DOI: 10.1109/ TIE.2016.2594793.

10. Huang Y., Yuan B., Xu S., Han T. Fault diagnosis of permanent magnet synchronous motor of coal mine belt conveyor based on digital twin and ISSA-RF. Processes. 2022, vol. 10, article 1679. DOI: 10.3390/pr10091679.

11. Torac I., Tutelea L., Boldea I. High performance small ALA-rotor reluctance synchronous motor: preliminary design for variable speed with key FEM validation. IEEE 20th International Power Electronics and Motion Control Conference. Brasov, Romania, 2022, pp. 87—92. DOI: 10.1109/ PEMC51159.2022.9962915.

12. Isfanuti A. S., Tutelea L. N., Boldea I. Doubly salient ferrite rotor PM single phase SM motor: FEM based optimal design and analysis. 2021 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2021 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). Brasov, Romania, 2021, pp. 143—150. DOI: 10.1109/OPTIMACEMP50812.2021.9590046.

13. Wu S., Wang Y., Tong W. Design and analysis of new modular stator hybrid excitation synchronous motor. CES Transactions on Electrical Machines and Systems. 2022, vol. 6, no. 2, pp. 188—194. DOI: 10.30941/CESTEMS.2022.00025.

14. Kaluzhskiy D. L., Efimova Yu. B., Lappi F. E., Kharitonov A. S. Method of selecting the main dimensions of active parts of synchronous drive under conditions of size restrictions. Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2018, no. 2, pp. 191—194. [In Russ].

15. Kaluzhskiy D. L., Efimova Yu. B., Kharitonov A. S., Kulikov A. D. Low noise synchronous drive based on the slotless electric motor. 14th International scientific-technical Conference of Actual problems of electronic instrument engineering (APEIE), Novosibirsk. 2018, vol. 1, part 5, pp. 152—158. DOI: 10.1109/APEIE.2018.8545778.

16. Kaluzhsky D. L., Efimova Yu. B.,Kharitonov A. S., Kulikov A. D. Smooth-core armature electric machine based synchronous electric drive. Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2018, no. 2, pp. 194—197. [In Russ].

17. Simonov B. F., Neiman V. Y., Neiman L. A., Kordubailo A. O. Simulation modeling of operation of downhole vibration exciter EM drive. Journal of Mining Science. 2020, vol. 56, no. 3, pp. 435—444. DOI: 10.1134/S1062739120036726.

18. He M., Li W., Peng J., Yang J. Multi-layer quasi three-dimensional equivalent model of axialflux permanent magnet synchronous machine. CES Transactions on Electrical Machines and Systems. 2021, vol. 5, no. 1, pp. 3–12. DOI: 10.30941/CESTEMS.2021.00002.

19. Wilson R., Gandhi R., Kumar A., Roy R. Design and analysis of twin-rotor axial flux permanent magnet synchronous motor for electric bicycle using 3D finite element analysis. IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE 2020), Cochin, India, 2020, pp. 1–6. DOI: 10.1109/PESGRE45664.2020.9070706.

20. Liu Y., Ni R., Zhao Y., Han S. Implementation of two-dimensional finite element analysis method in axial flux permanent magnet motor. 26th International Conference on Electrical Machines and Systems (ICEMS 2023), Zhuhai, China, 2023, pp. 4328—4333, DOI: 10.1109/ICEMS59686.2023. 10345311.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.