Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust

The actual dust situation in shortwall and longwall faces of coal mines remains the most unfavorable and largely depends on the effectiveness of dust dedusting measures. The selection of dedusting measures is carried out on the basis of the predicted dust content. The formulas, which used for its calculation, do not take into account the time and specifics of the wetting of coal dust with solutions of mine wetting agents, and therefore do not reflect to the extent the real state of the mine atmosphere in terms of the dust factor. The paper shows the shortcomings of the existing methodology for assessing the predictive dust content in the faces of coal mines; the indicators of specific dust emission of coal seams mined at the mines of JSC «SUEK-Kuzbass» are analyzed; the results of studies of the wettability of coal dust of various compositions and measurements of dust content in the working faces of coal mines carried out by the authors are given. Based on the totality of experimentally obtained data and analyzed cumulative factors, using the methods of correlation-regression analysis, a multiple linear regression to calculate the predicted dust content was obtained. The proposed formula has an impact on the dust content of a number of mining-geological and physical characteristics of coal seams and mining parameters of their processing. To calculate the wetting time of coal dust, which determines in a wide range the features of its soaring and sedimentation rate, a formula is proposed. Formula takes into account the variability of the physicochemical properties of coal dust of dense petrographic composition, the type of wetting agent and the concentration of its working solution.

Keywords: coal mine, longwall face, airborne coal dust, predicted dust content, dust suppression, dust wetting time, combine productivity, coal hardness, seam thickness, efficiency of dust control measures.
For citation:

Kornev A. V., Ledyaev N. V., Kabanov E. I., Korneva M. V. Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):115—134. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_115.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 115-134
ISBN: 0236-1493
UDK: 622.807
DOI: 10.25018/0236_1493_2022_62_0_115
Article receipt date: 14.01.2022
Date of review receipt: 29.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Kornev A. V., Cand. Sci. (Eng.), Head of the Laboratory, Associate Professor at the Department of Industrial Safety, https://orcid.org/0000-0001-6371-9969, Saint Petersburg Mining University, 199106, St. Petersburg, 21st Line V. I., 2, Russia,
e-mail: Kornev_AV@pers.spmi.ru;
Ledyaev N. V., Head of Enterprise Emergency Stability Department, JSC «SUEK-Kuzbass», 652507, Leninsk-Kuzneckij, Vasil’eva, 1, Russia, e-mail: ledyaevnv@suek.ru;
Kabanov E. I., Cand. Sci. (Eng.), Assistant at the Department of Industrial Safety, https://orcid.org/0000-0001-7580-9099, Saint Petersburg Mining University, 199106, St. Petersburg, 21st Line V. I., 2, Russia, e-mail: Kabanov_EI@pers.spmi.ru;
Korneva M. V., Cand. Sci. (Eng.), Leading Engineer of the Department of Methodological Support of the Educational Process, Saint Petersburg Mining University, 199106, St. Petersburg, 21st Line V. I., 2, Russia, e-mail: Korneva_MV@pers.spmi.ru.

 

For contacts:

Kornev A. V., e-mail: Kornev_AV@pers.spmi.ru.

Bibliography:

1. Petrenko I. E. Russia’s coal industry performance for January – December, 2021. Ugol’. 2022, no. 3, pp. 9–23. [In Russ]. DOI: 10.18796/0041-5790-2022-1-9−23.

2. Tarazanov I. G., Gubanov D. A. Russia’s coal industry performance for January – December 2020. Ugol’. 2021, no. 3, pp. 27–43. [In Russ]. DOI: 10.18796/0041-5790−2021−3-27−43.

3. Artem’ev V. B. JSC «SUEK» in 2018 — progressive technologies and innovations at the service of production. Ugol’. 2019, no. 3, pp. 4–12. DOI: 10.18796/0041-5790-2019-34−12. [In Russ].

4. Smirnyakov V. V., Rodionov V. A., Smirnyakova V. V., Orlov F. A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022, vol. 253, pp. 71–81. [In Russ]. DOI: 10.31897/PMI.2022.12.

5. Chebotarjov A. G. Modern working conditions at mining enterprises and ways to normalize them. Russian Mining Industry. 2012, no. 2 (102), pp. 84–88. [In Russ].

6. Chemezov E. N. Industrial safety principles in coal mining. Journal of Mining Institute. 2019, vol. 240, pp. 649–653. [In Russ]. DOI: 10.31897/pmi.2019.6.649.

7. Kazanin O. I., Rudakov M. L., Kolvakh K. A. Occupational safety and health in the sector of coal mining. International Journal of Civil Engineering and Technology. 2018, vol. 9, no. 6, pp. 1333–1339.

8. Colinet J. F., Rider J. P., Listak J. M., Organiscak J. A., Wolfe A. L. Best Practices for Dust Control in Coal Mining. 2010, no. 2010–110. Pittsburgh: DHHS (NIOSH) Publication. — 70 р.

9. Zhang H., Han W., Xu Y., Wang Z. Analysis on the Development Status of Coal Mine Dust Disaster Prevention Technology in China. Journal of Healthcare Engineering. 2021, vol. 2021, article 5574579, pp. 1–9. DOI: 10.1155/2021/5574579.

10. Colinet J. F. The Impact of Black Lung and a Methodology for Controlling Respirable Dust. Mining, Metallurgy & Exploration. 2020, vol. 37, pp. 1847–1856. DOI: 10.1007/ s42461-020-00278-7.

11. Wang W. Z., Wang Y. M., Shi G. Q. Waveband selection within 400–4000 cm−1 of optical identifcation of airborne dust in coal mine tunneling face. Applied Optics. 2016, vol. 55, no. 11, pp. 2951–2959.

12. Peters S., de Klerk N., Reid A., Fritschi L., Musk A. B., Vermeulen R. Quantitative levels of diesel exhaust exposure and the health impact in the contemporary Australian mining industry. Occupational and Environmental Medicine. 2017. vol. 74 (4), pp. 282–289. DOI: 10.1136/oemed-2016−103808.

13. Saarikoski S., Teinilä K., Timonen H., Aurela M., Laaksovirta T., Reyes F., Vasques Y., Oyola P., Artaxo P., Pennanen S., Junttila S., Linnainmaa M., Salonen R. O., Hillamo R. Particulate matter characteristics, dynamics and sources in an underground mine. Aerosol Science and Technology. 2018, vol. 52 (1), pp. 114–122. DOI: 10.1080/02786826.2017.1384788.

14. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, iss. 02, pp. 1917–1929.

15. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Y. G. Results of the study of kinetic parameters of spontaneous combustion of coal dust. Journal of Mining Institute, 2020, vol. 246, pp. 617–622. [In Russ]. DOI: 10.31897/PMI.2020.6.3.

16. Gendler S. G., Gabov V. V., Babyr N. V., Prokhorova E. A. Justification of engineering solutions on reduction of occupational traumatism in coal longwalls. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 5–19. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_5.

17. Luo Y., Wang D., Cheng J. Effects of rock dusting in preventing and reducing intensity of coal mine explosions. International Journal of Coal Science and Technology, 2017, vol. 4 (2), pp. 102–109. DOI: 10.1007/s40789−017−0168-z.

18. Gonen A. Ventilation Requirements for Today’s Mechanized Underground Metal Mines. International Journal of Advanced Research in Engineering. 2018, vol. 4, no. 1, pp. 7–10, DOI: 10.24178/ijare.2018.4.1.07.

19. Balovtsev S. V. Comparative assessment of aerological risks at operating coal mines. MIAB. Mining Inf. Anal. Bull. 2021, no. 2–1, pp. 5–17. [In Russ]. DOI: 10.25018/02361493-2021-21−0-5−17.

20. Leisle A. V., Kovalski E. R. Assessing the well yield during methane drainage in coal mines. Ecology, Environment and Conservation. 2017, vol. 23. pp. 317–322.

21. Vinogradov E. A., Nikiforov A. V., Kochneva A. A. Computational fluid dynamics study of ventilation flow paths on longwall panel. International Journal of Civil Engineering and Technology. 2019, vol. 10, iss. 02, pp. 1140–1147.

22. Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 78–89. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0−78−89.

23. Barone T. L., Patts J. R., Janisko S. J., Colinet J. F., Patts L. D., Beck T. W., Mischler S. E. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust. Journal of Occupational and Environmental Hygiene. 2016, vol. 12(4), pp. 288–296. DOI: 10.1080/15459624.2015.1116694.

24. Suprun I., Kuznetsov V. S., Ivanov A. V. Development of an engineer operation aimed at the reduction of atmospheric dust pollution in the decommissioning of iron-ore treatment waste. Journal of Ecological Engineering. 2019, vol. 20, iss. 4. pp. 23–28. DOI: 10.12911/22998993/102612.

25. Korshunov G. I., Safina A. M., Karimov A. M. Research and Analysis of the Sources of Emission of Respirable Fraction of Dust at the Coal Mines. Bezopasnost’ Truda v Promyshlennosti. 2021, vol. 10, pp. 65–70. [In Russ]. DOI: 10.24000/0409-2961-2021-10−65−70.

26. Wu T., Yang Zh., Wang A., Zhang K., Wang B. A study on movement characteristics and distribution law of dust particles in open-pit coal mine. Scientific Reports. 2021, vol. 11, article 14703, pp. 1–10. DOI: 10.1038/s41598-021-94131-6.

27. Shi G., Liu M., Guo Zh., Hu F., Wang D. Unsteady simulation for optimal arrangement of dedusting airduct in coal mine heading face. Journal of Loss Prevention in the Process Industries. 2017, vol. 46, pp. 45–53. DOI: 10.1016/j.jlp.2017.01.011.

28. Gendler S. G., Borisovsky I. A. Estimated impact of temperature conditions on deep pits natural ventilation in the Arctic. Sustainable Development of Mountain Territories. 2022;14(2):218-227. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-218-227.

29. Kazanin O. I., Sidorenko A. A., Sirenko Y. G. Numerical study of the air-gas dynamic processes when working out the Mosshny seam with longwall faces. ARPN Journal of Engineering and Applied Sciences. 2018, vol. 13, no. 4, pp. 1534–1538.

30. Linh N. K., Gabov V. V., Lykov Y. V., Urazbakhtin R. Y. Evaluating the efficiency of coal loading process by simulating the process of loading onto the face conveyor with a shearer with an additional share. International Journal of Engineering. Transactions A: Basics. 2021, vol. 34 (7), pp. 1804–1809. DOI: 10.5829/IJE.2021.34.07A.25.

31. Wang H., Xuan W., Zhang Zu., Qin B. Experimental investigation of the properties of dust suppressants after magnetic-field treatment and mechanism exploration. Powder Technology. 2019, vol. 342, pp. 149–155. DOI: 10.1016/j.powtec.2018.09.099.

32. Wang Q. G., Wang D. M., Wang H. T., Shen Y. D., Zhu X. L. Experimental investigations of a new surfactant adding device used for mine dust control. Powder Technology. 2018, no. 327, рp. 303–309.

33. Jiang Z., Dou G. Preparation and Characterization of Chitosan Grafting Hydrogel for Mine-Fire Fighting. ACS Omega. 2020, vol. 5 (5), pp. 2303–2309. DOI: 10.1021/ acsomega.9b03551.

34. Borowski G., Smirnov Y. D., Ivanov A. V., Danilov A. S. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2020, vol. 1, no. 1, pp. 1–13. DOI: 10.1080/1 9392699.2020.1841177.

35. Korneva M. V. Development and justification of measures to reduce the concentration of fine fractions in the dust aerosol of coal mines: Abstract of the thesis. dis... cand. tech. Sciences. St. Petersburg: Saint Petersburg Mining University, 2020, 20 p. [In Russ].

36. Chen X., Hu H., Xu Y., Zhang Y., Yang G. Experimental investigation of foam dedusting agent in underground coal mine. Materials Research Innovations. 2015, vol. 19(S8), pp. 508–511. DOI: 10.1179/1432891715z.0000000001736.

37. Skopintseva O. V., Vertinskiy A. S., Ilyakhin S. V., Savelev D. I., Prokopovich A. Yu. Substantiation of efficient parameters of dust-controlling processing of coal massif in mines. Gornyi Zhurnal. 2014, no. 5, pp. 17–20. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.