Estimation of selectivity of sulfhydryl collectors on a dithiophosphate basis

Copper reserves in Russia rank fourth largest in the world, which makes the country one of the top copper suppliers. Copper enjoys high demand owing to its properties. Intense copper mining has resulted in the decline in copper reserves worldwide and forced transition to processing of difficult and rebellious ore. Such ore treatment needs new reagents and circuits of flotation. The influence of phosphorus-bearing sulfhydryl collectors on flotation performance of rebellious copper sulphide ore is studied. The tests were performed with collecting agents: Beraflot 3026, Beraflot 40, Beraflot 3035 (Gvintsvetmet Institute), Aerofin 3418А, Aeroflot308, Aeroflot 238 (Solvay (Cytec)), BTF 1552, BTF 1517and BTF 163 (Kvadrat plyus). Butyl xanthate was used as a reference standard. The selectivity indexes of inter-circuit copper flotation and copper losses with tailings in the tests with the listed agents and in the reference tests performed in the same conditions were compared. The dialkyl dithiophosphate-based collector BTF 1517 appears as the most selective agent, with inter-circuit Cu selectivity of 4.01 and copper loss with tailings of 11.35%. The selectivity in Cu concentrates was 3.88. Collectors BTF 1552 and BTF 163 also showed the best selectivity of 4.94 and 6.13, respectively, in one Cu concentrate and 3.79 and 3.26, respectively, in two Cu concentrates, at copper losses of 12.90% and 15.98%. The lowest selectivity was obtained with butyl xanthate—3.58 in one Cu concentrate and 2.19 in two Cu concentrates, at copper loss with tailings of 20.85%.

Keywords: tennantite, pyrite, flotation, copper sulphide ore, sulfhydryl collector, mineral, arsenic, copper.
For citation:

Zharolla N. D., Yergeshev A. R., Ignatkina V. A. Estimation of selectivity of sulfhydryl collectors on a dithiophosphate basis. MIAB. Mining Inf. Anal. Bull. 2020;(11):14-26. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-14-26.

Issue number: 11
Year: 2020
Page number: 14-26
ISBN: 0236-1493
UDK: 622.7.017.24
DOI: 10.25018/0236-1493-2020-11-0-14-26
Article receipt date: 10.04.2020
Date of review receipt: 29.06.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

N.D. Zharolla1, Magister, e-mail:,
A.R. Yergeshev1, Magister, e-mail:,
V.A. Ignatkina1, Dr. Sci. (Eng.), Professor, e-mail:,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

N.D. Zharolla, e-mail:


1. Kozhin P. Roll copper mountains. Business Guide «Umnaya med». 2017, no 64, pp. 3. [In Russ].

2. Kazarin L. Copper Revolution. Expert Ural. 2019, no 1—3, pp. 40—42. [In Russ].

3. Mednye rudy [Copper ores], available at: met.rek.-mednye-rudy.pdf (accessed 06.03.2020). [In Russ].

4. Solozhenkin P., Ibragimova O., Emelyanenko E., Yagudina J. Study of flotation parameters for copper recovery from tennantite ore. International Journal of Science and Research. 2016. Vol. 5. No 3. Pp. 311—315.

5. Abramov A. A. Sobranie sochinenyi: T. 8: Flotaciya. Sulfidnye mineraly; uchebnoe posobie [Collected works: Vol. 8: Flotation. Sulfide minerals: textbook], Moscow, Izd-vo «Gornaya kniga», 2013, pp. 424—428.

6. Adamov E. V. Tehnologiya rud cvetnyh metallov: uchebnoe posobie [Technology of nonferrous metal ore: textbook], Moscow, Izd-vo «Ucheba», 2007, pp. 33—435.

7. Bulatovic S. M. Handbook of flotation reagents. Chemistry, theory and practice: Flotation of sulfide ores. Vol. 1. Elsevier science & Technology Books, 2007. 446 p.

8. Lattanzi P., Da Pelo S., Musu E., Atzei D., Elsener B., Fantauzzi M., Rossi A. Enargite oxidation. A review. Earth-Science Review. 2008. Vol. 86. No 1—4. Pp. 62—88.

9. Petrus H. T.B.M., Hirajima T., Sasaki T., Okamoto H. Effects of sodium thiosulphate on chalcopyrite and tennatite: An insight for alternative separation technique. International Journal of Mineral Processing. 2012. Vol. 102. Pp. 116—123.

10. Kayumov A. A., Aksenova D. D., Ignatkina V. A., Bocharov V. A. Studying the flotation and adsorption properties of tennantite using various sulfhydryl collectors. MIAB. Mining Inf. Anal. Bull. 2016, no 11, pp. 226—237. [In Russ].

11. Fornasiero D., Fullston D., Li C., Ralston J. Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. International Journal of Mineral Processing. 2001. Vol. 61. No 2. Pp. 109—119.

12. Fullston D., Fornasiero D., Ralston J. Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999. Vol. 146, No 1—3. Pp. 113—121.

13. Puntsova B. T., Ignatkina V. A., Bocharov V. A., Khachatryan L. S. Development of a selective reagent scheme for flotation of copper-zinc-pyrite ore using modified dithiophosphates. MIAB. Mining Inf. Anal. Bull. 2012, no 1, pp. 133—145. [In Russ].

14. Agheli S., Hassanzadeh A., Hassas B. V., Hasanzadeh M. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. International Journal of Mining Science and Technology. 2018. Vol. 23. No 2. Pp. 167—176.

15. Chanturiya V. A., Vigdergauz V. E. Elektrokhimiya sul'fidov. Teoriya i praktika flotatsii [Electrochemistry of sulfides. Theory and practice of flotation], Moscow, Izd-vo «Ruda i Metally», 2008, pp. 272.

16. Lotter N. O., Bradshaw D. J., Barnes A. R., Classification of the Major Copper Sulphides into semiconductor types, and associated flotation characteristics. Minerals Engineering. 2016. Vol. 96—97. Pp. 177—184.

17. Lotter N. O., Bradshaw D. J. The formulation and use of mixed collectors in sulphide flotation. Minerals Engineering. 2010. Vol. 23. Pp. 945—951.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.