Surface roughness estimation and rock type identification by ultrasonic and optical techniques

In the present-day practice of geocontrol, the structure and behavior of rock masses are estimated using various geophysical methods, in particular, ultrasonic sounding and logging. Such measurement techniques require dry contact at the rock–transducer interface, which essentially reduces reliability of the information obtained. Enhancement of the acoustic approaches to the adjacent rock mass analysis is possible via their complexing with the contactless optical scanning of well walls. This article describes the experimental observation of various rock types using the dedicated optical electronic modules. It is shown that surface roughness of rocks can be determined from the analysis of the reflected light intensity, and the main message-bearing parameters in this case can be the coefficient of variation and coefficient of correlation of signals recorded along the same profile by two photosensors. Furthermore, it is experimentally proved that surface roughness has influence on ultrasonic pulses, which consists in reduction in energy and in spectrum of signals. It is proved that the energy of the pulses can be adjusted by changing the pressing force of the transducer in the pressure range from 0 to 2.5 atm. It is also possible to identify rock types from the analysis of the reflected light intensity at different wave lengths, which can be used to improve reliability of ultrasonic logging of adjacent rock mass composed of rocks having similar acoustic properties.

Keywords: rocks, control, optical measurements, ultrasound, complexing, structure, behavior.
For citation:

Nikolenko P. V., Zaitsev M. G. Surface roughness estimation and rock type identification by ultrasonic and optical techniques. MIAB. Mining Inf. Anal. Bull. 2022;(3):5-15. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_5.


The study was supported by the Russian Science Foundation, Project No. 21-77-00046.

Issue number: 3
Year: 2022
Page number: 5-15
ISBN: 0236-1493
UDK: 622.02:539.2
DOI: 10.25018/0236_1493_2022_3_0_5
Article receipt date: 16.11.2021
Date of review receipt: 23.12.2021
Date of the editorial board′s decision on the article′s publishing: 10.02.2022
About authors:

P.V. Nikolenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail:,
M.G. Zaitsev1, Graduate Student,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

P.V. Nikolenko, e-mail:


1. Bakin V. A. Fracturing of rocks and its influence on the stability of rocks in mine workings. MIAB. Mining Inf. Anal. Bull. 2020, no. S37, pp. 21—30. [In Russ]. DOI: 10.25018/0236-14932020-11-37-21-30.

2. Dunaev A. V. The nature of the change in the fracturing of rocks of the Kovdor apatitemagnetite deposit with depth. MIAB. Mining Inf. Anal. Bull. 2010, no. 3, pp. 130—136. [In Russ].

3. Sosnovskaya E. L., Avdeev A. N. Forecast of the stability of the array of gold ore deposits based on the analysis of core material from exploration core drilling wells. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 216—223. [In Russ]. DOI: 10.25018/0236-1493-2020-310-208-215.

4. Rasolofosaon P. N. J., Rabbel W., Siegesmund S., Vollbrecht A. Characterization of crack distribution: Fabric analysis versus ultrasonic inversion. Geophysical Journal International. 2000, vol. 141, no. 2. pp. 413–424.

5. Kobayashi R. Studies on crack distribution and sonic velocity change in rocks. Journal of the Japan Institute of Metals and Materials. 1974, vol. 90, no. 1031, pp. 21–26.

6. Shkuratnik V. L., Bochkareva T. N. Theory of electroacoustic path during the interhole sonic testing of rocks surrounding. A worked space. Journal of Mining Science. 1996, vol. 32, no. 6, pp. 476–482.

7. Li T., Wang Z., Yu N., Wang R., Wang Y. Numerical study of pore structure effects on acoustic logging data in the borehole environment. Fractals. 2020, vol. 28, no. 3. DOI: 10.1142/ S0218348X20500498.

8. Li T., Wang Z., Gu Y. J., Wang R., Wang Y. Experimental study of fracture structure effects on acoustic logging data using a synthetic borehole model. Journal of Petroleum Science and Engineering. 2019, vol. 183. DOI: 10.1016/j.petrol.2019.106433.

9. Taghizadeh S., Dwyer-Joyce R. S. Linear and nonlinear normal interface stiffness in dry rough surface contact measured using longitudinal ultrasonic waves. Applied Sciences (Switzerland). 2021, vol. 11, no. 12. DOI: 10.3390/app11125720.

10. Tohmyoh H., Saka M. Dry-contact technique for high-resolution ultrasonic imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2003, vol. 50, no. 6, pp. 661–667.

11. Liu Y., Qiao L., Li Y., Ma G., Golosov A. M. Ultrasonic spectrum analysis of granite damage evolution based on dry-coupled ultrasonic monitoring technology. Advances in Civil Engineering. 2020, vol. 2020. DOI: 10.1155/2020/8881800.

12. Liu Y., Li Y., Qiao L., Fan D. Dry coupled ultrasonic testing technology and its application in testing rock dynamic and static parameters. Meitan Xuebao/Journal of the China Coal Society. 2019, vol. 44, no. 5, pp. 1465–1472.

13. Kormnov A. A., Nikolenko P. V. Structural diagnostics of the roof of a mine working using ultrasonic noise correlation logging. MIAB. Mining Inf. Anal. Bull. 2016, no. 8, pp. 265—271. [In Russ].

14. Shkuratnik V. L., Nikolenko P. V., Kormnov A. A. Estimation of ultrasonic correlation logging sensitivity in crack detection in excavation roof. Gornyi Zhurnal. 2016, no. 6, pp. 60— 63. [In Russ]. DOI: 10.17580/gzh.2016.06.03.

15. Yuan R., Han D., Tang Y., Wei H., Mo T., Wang C. Fracture characterization in oil-based mud boreholes using image logs: example form tight sandstones of Lower Cretaceous Bashijiqike Formation of KS5 well area, Kuqa Depression, Tarim Basin, China. Arabian Journal of Geosciences. 2021, vol. 14, no. 6, Art. 435.

16. Lei T., Zeroug S., Bose S., Prioul R., Donald A. Inversion of high-resolution high-quality sonic compressional and shear logs for unconventional reservoirs. Petrophysics. 2019, vol. 60, no. 6, pp. 697–711. DOI: 10.30632/PJV60N6-2019a1.

17. Winkler K. W., D'Angelo R. Ultrasonic borehole velocity imaging. Geophysics. 2006, vol. 71, no. 3, pp. F25–F30.

18. Enikeev V. N., Tashbulatov V. D., Gaifullin M. Ya., Guman O. M. Application of borehole acoustic methods for solving problems of developing solid mineral deposits. Karotazhnik. 2011, no. 5 (203), pp. 224—237. [In Russ].

19. Williams J., Carole D. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. Journal of Applied Geophysics. 2004, vol. 55, no. 1–2, P. 151–159.

20. Skvortsov V. Yu., Skobelev A. V. Deep television video system «argo-digital» on a logging cable. Karotazhnik. 2012, no. 1 (211), pp. 110—116. [In Russ].

21. Sait I., Joerg M. Fracture connectivity from fracture intersections in borehole image logs. Computers & Geosciences. 2003, vol. 29, no. 2. pp. 143–153.

22. Yuanming J. Infrared radiation with deformation of bolt and rock. International symposium on photoelectronic detection and imaging 2009: advances in infrared imaging and applications. 2009, vol. 7383, article 77315.

23. Weixing W., Fengping W., Xiaojun H., Junfang S. Rock fracture image acquisition using two kinds of lighting and fusion on a wavelet transform. Bulletin of Engineering Geology and the Environment. 2016, vol. 75, no. 1, pp. 311–324. DOI: 10.1007/s10064-015-0747-4.

24. Bendat Dzh., Pirsol A. Izmerenie i analiz sluchaynykh protsessov [Measurement and analysis of stochastic processes], Moscow, Mir, 1974, 403 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.