Rock mass quality assessment to reveal potentially hazardous areas in open pit mine design

The engineering protection of pitwall slope is a burning issue in modern reality. An open pit mine design should take into account the current engineering geological conditions and should rest upon a comprehensive rock mass quality assessment to produce a prediction engineering-geological model as a result. Only an integrated approach can ensure objectivity of the modeling using data on rock mass jointing nature and ratio, obtained at the stage of exploration. The authors propose an integrated rock mass jointing assessment procedure using two methods—engineering-geological records of oriented and non-oriented drill core. Furthermore, a staged approach to the obtained information interpretation is offered with the detailed description of jointing. The article discusses a case-study of the integrated approach at a mineral deposit in the Khabarovsk Krai, with the resultant predictive engineering-geological model with the detected hazardous sites in the design pitwall slopes, with regard to spatial characteristic of the mining facility. Such model can ensure substantiation and functional reliability of engineering solutions at the stage of open pit mine design.

Keywords: jointing, engineering-geological model, rock mass stability, hard rock mass, oriented core, prediction, rock failure mechanisms, geotechnical conditions.
For citation:

Korchak S. A., Abaturova I. V., Savintsev I. A., Storozhenko L. A. Rock mass quality assessment to reveal potentially hazardous areas in open pit mine design. MIAB. Mining Inf. Anal. Bull. 2022;(9):87-98. [In Russ]. DOI: 10.25018/0236_1493_2022_9_0_87.

Issue number: 9
Year: 2022
Page number: 87-98
ISBN: 0236-1493
UDK: 550.8.05
DOI: 10.25018/0236_1493_2022_9_0_87
Article receipt date: 30.06.2022
Date of review receipt: 12.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.08.2022
About authors:

S.A. Korchak1, Graduate Student, e-mail:, ORCID ID: 0000-0001-7175-289X,
I.V. Abaturova1, Dr. Sci. (Geol. Mineral.), Professor, ORCID ID: 0000-0003-4829-3204,
I.A. Savintsev1, Cand. Sci. (Geol. Mineral.), Assistant Professor, ORCID ID: 0000-0002-4760-9900,
L.A. Storozhenko1, Cand. Sci. (Geol. Mineral.), Assistant Professor, ORCID ID: 0000-0003-4185-956X,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.


For contacts:

S.A. Korchak, e-mail:


1. Sashurin A. D., Panzhin A. A. Current problems and objectives in geomechanics. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 188—198. [In Russ]. DOI: 10.25018/0236-1493-2020310-188-198.

2. Zoteev V. G., Zoteev O. V. Atypical deformations of the sides of deep ore pits and measures to prevent them. Gornyi Zhurnal. 2007, no. 1, pp. 40—45. [In Russ].

3. Abaturova I. V., Storozhenko L. A., Pisetsky V. B., & Savintsev I. A. Use of geological and structural analysis in evaluating engineering and geological conditions of mineral deposits. Engineering and Mining Geophysics. Conference Proceedings. 2020, vol. 2020, pp. 1—9. DOI: 10.3997/2214-4609.202051096.

4. Abaturova I., Savintsev I., Storozhenko L., Borisikhina O. Ensuring the sustainable functioning of the geotechnical system of mineral deposits in difficult engineering and geological conditions. 25th European Meeting of Environmental and Engineering Geophysics. 2019, vol. 2019, pp. 1—5. DOI: 10.3997/2214-4609.201903464.

5. Dunaev A. V. Geological and structural assessment of carbonatite deposits for predicting deformations of non-working ledges of quarries during their operation. MIAB. Mining Inf. Anal. Bull. 2010, no. 8, pp. 394—395. [In Russ].

6. Korchak S. A., Abaturova I. V., Savintsev I. A. Kinematic fracture analysis as the main tool for predicting the mechanism of deformation of a rock mass. Engineering and Mining Geophysics. 2020, vol. 2020, pp. 1—10. DOI:10.3997/2214-4609.202051127.

7. Berdinova N. O., Sedina S. A., Shamganova L. S., Kalyuzhny E. S. Prediction of strains in strong rock mass of the Kurzhunkul open pit mine by the kinematic analysis. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 58—68. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-58-68.

8. Laubscher D. H., Jakubec J. The MRMR rock mass classification for jointed rock masses. Underground Mining Methods: Engineering Fundamentals and International Case Studies. SMME, 2001, pp. 475—481.

9. Wagner H. Deep mining: a rock engineering challenge. Rock Mechanics and Rock Engineering. 2019, vol. 52, no. 5, pp. 1417—1446. DOI: 10.1007/s00603-019-01799-4.

10. Nicco M., Holley E., Hartlieb P., Kaunda R., Nelson P. Methods for characterizing cracks induced in rock. Rock Mechanics and Rock Engineering. 2018, vol. 51, no. 7, pp. 2075—2093. DOI: 10.1007/s00603-018-1445-x.

11. Khatik V. M., Nandi A. K. A generic method for rock mass classification. Journal of Rock Mechanics and Geotechnical Engineering. 2018, vol. 10, no. 1, pp. 102—116. DOI:10.1016/J. JRMGE.2017.09.007.

12. Zhang Q., Huang X., Zhu H., Li J. Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI). Tunnelling and Underground Space Technology. 2019, vol. 83, pp. 73—81. DOI: 10.1016/j.tust.2018.09.015.

13. Boos I. Yu., Yunakov Yu. L., Patachakov I. V., Grishin A. A. Structural analysis of pit wall rock mass on 3D slope model constructed using a multicopter. MIAB. Mining Inf. Anal. Bull. 2021, no. 12, pp. 19—30. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_96.

14. Seryiy S. S., Ermolov V. A., Dunaev A. V. Engineering-geological zoning of rock massifs and prediction of deformations of quarry ledges. MIAB. Mining Inf. Anal. Bull. 2008, no. 5, pp. 157—164. [In Russ].

15. Zubkov A. V., Sentyabov S. V. New approaches to the assessment of stability of rock rock arrays. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 68—77. DOI: 10.25018/0236-14932020-31-0-68-77.

16. Bakin V. A. Fracturing of rocks and its influence on the stability of rocks in mine workings. MIAB. Mining Inf. Anal. Bull. 2020, no. S37, pp. 21—30. [In Russ]. DOI: 10.25018/02361493-2020-11-37-21-30.

17. Raimjanov B. R., Кhasanov A. R. Ratings of structural rock mass quality for Zarmitan gold mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 115—127. [In Russ]. DOI: 10.25018/ 0236-1493-2020-5-0-115-127.

18. Chuzhinov D. N., Rubchevskiy Yu. I., Malykh M. Yu., Osetskiy A. I., Kolpakov V. B., Simakov A. P. Oriented core and downhole telemetry: application experience at Polymetal work sites. Prospect and protection of mineral resources. 2020, no. 10, pp. 34—39. [In Russ].

19. Sosnovskaya E. L., Avdeev A. N. Forecast of the stability of the array of gold ore deposits based on the analysis of core material from exploration core drilling wells. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 216—223. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-216-223.

20. Korchak S. A., Abaturova I. V. Methodology for studying the fracturing of rock massifs at different stages of the study of mineral deposits. Engineering and Mining Geophysics. 2021, vol. 2021, pp. 1—11.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.