Loading of rib pillars in multiple seam mining at the Upper Kama salt deposit

The load estimation procedure for rib pillars uses the methods of mathematical modeling to find a normalized value of shear stress intensity in the center of vertical pillar section. As distinct from the standard procedure by Turner–Shevyakov, the new approach is unlimited by simple options of an open stoping system (single seam mining, flat lying seam, canonically shaped pillars) and is applicable in complex geotechnical situations. The article describes implementation of the calculation as a case-study of two sylvinite seams in cases of in-line and off-line arrangement of stopes. It is found that in the in-line stoping in mining of two sylvinite seams, the Turner–Shevyakov formula produces generally lower estimates of loading of rib pillars. The underestimation level depends on the thickness of the seam parting and on the size ratio of stopes in both working seams. In the off-line arrangement of stopes, the Turner–Shevyakov procedure, vice versa, gives essentially overestimated loading of rib pillars when the seam parting is less than 4 m thick as the procedure neglects unloading of the pillars, especially in undermining. Formally, the research findings demonstrate feasibility of increased extraction of ore in case of the off-line stoping but need a comprehensive geomechanical validation because of the hazard of caving of the upper working seam pillar to the stoping void of the lower working pillar.

Keywords: stoping system, rib pillars, loading, mathematic modeling, stress state, stress intensity, strength, failure.
For citation:

Baryakh A. A., Lomakin I. S., Samodelkina N. A., Tenison L. O. Loading of rib pillars in multiple seam mining at the Upper Kama salt deposit. MIAB. Mining Inf. Anal. Bull. 2023;(1):5-19. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_5.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 19-77-30008.

Issue number: 1
Year: 2023
Page number: 5-19
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236_1493_2023_1_0_5
Article receipt date: 07.10.2022
Date of review receipt: 28.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

A.A. Baryakh1, Dr. Sci. (Eng.), Аcademician of Russian Academy of Sciences, e-mail: bar@Mi-Perm.ru, ORCID ID: 0000-0003-2737-6166,
I.S. Lomakin1, Cand. Sci. (Eng.), Researcher, e-mail: Lomakin@Mi-Perm.ru, ORCID ID: 0000-0001-9852-351X,
N.A. Samodelkina1, Cand. Sci. (Eng.), Leading Researcher, e-mail: Samodelkina@Mi-Perm.ru
L.O. Tenison, Cand. Sci. (Eng.), Head Department, Uralkali, Berezniki, Russia, e-mail: Lyudmila.Tenison@uralkali.com,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

A.A. Baryakh, e-mail: bar@Mi-Perm.ru.

Bibliography:

1. Shevyakov L. D. Razrabotka mestorozhdeniy poleznykh iskopaemykh [Mineral deposit development], Moscow, Gosgortekhizdat, 1963, 728 p.

2. Gorpinchenko V. A., Saznov V. V., Andreev A. A., Vilchinskiy V. B. Procedure for determining efficient parameters of relief holes for safe destressing of rockburst-hazardous rock masses in the Norilsk Industrial Area. Gornyi Zhurnal. 2015, no. 6, pp. 68—73. [In Russ]. DOI: 10.17580/gzh.2015.06.14.

3. Sankovsky A. A., Aleksenko A. G., Nikiforov A. V. Practical experience analysis: superimposed seams series mining at the Verkhnekamsk potassium-magnesium salts deposit applying room-and-pillar mining method. International Journal of Civil Engineering and Technology. 2018, vol. 9, no. 6, pp. 715—728.

4. Osintsev V. A., Berkovich V. M., Gorbunov A. G. Calculation of loading of inter-chamber rib pillars. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2013, no. 1, pp. 11—14. [In Russ].

5. Baryakh A. A., Lobanov S. Y., Lomakin I. S. Analysis of time-to-time variation of load on interchamber pillars in mines of the upper Kama potash salt deposit. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no. 4, pp. 70—82. [In Russ].

6. Qin X. S., Cao H., Guo L. J. Sensitivity analysis of factors influencing pillar stability in the deep stope of underground salt mine. China Rock 2020. IOP Conference Series: Earth and Environmental Science. 2020, vol. 570, no. 2, article 022002. DOI: 10.1088/1755-1315/570/2/022002.

7. Belyakov N. A., Belikov A. A. Prediction of the integrity of the water-protective stratum at the Verkhnekamskoye potash ore deposit. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 33—46. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_33.

8. Baryakh A. A., Tenison L. O., Samodelkina N. A. Assessment of horizontal deformations in undermined areas. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 5—18. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_5.

9. Benyavski Z. Upravlenie gornym davleniem [Mountain pressure management], Moscow, Mir, 1990, 254 p.

10. Salamon M. D. G. Strength of coal pillars from back-calculation. 37th U.S. Symposium on Rock Mechanics, Vail Rocks. 1999, pp. 29—36.

11. Terentyev V .B. Determining tolerance time of interbed cap pillars for the conditions of contiguous bedding of sylvinite seams of Usolskiy potash plant. MIAB. Mining Inf. Anal. Bull. 2016, no. 2, pp. 295—308. [In Russ].

12. Bakirov Zh. B., Takishov A. A., Bakirov M. Zh., Mikhailov V. F. Determination of the pillar width during the chamber mining of an ore deposit. University Proceedings. 2021, no. 4(85), pp. 119—125. [In Russ]. DOI: 10.52209/1609_1825_2021_4_119.

13. Suorineni F. T., Mgumbwa J. J., Kaiser P. K., Thibodeau D. Mining of orebodies under shear loading. Part 2. Failure modes and mechanisms. Mining Technology. 2014, vol. 123, no. 4, pp. 240—249. DOI: 10.1179/1743286314Y.0000000072.

14. Baryakh A. A., Samodelkina N. A. To the calculation of pillar stability under condition of chamber mining. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2007, no. 1, pp. 11—20.

15. Martin C. D., Maybee W. G. The strength of hard-rock pillars. International Journal of Rock Mechanics and Mining Sciences. 2000, vol. 37, no. 8, pp. 1239—1246. DOI: 10.1016/ S1365-1609(00)00032-0.

16. Mortazavi A., Hassani F. P., Shabani M. A numerical investigation of rock pillar failure mechanism in underground openings. Computers and Geotechnics. 2009, vol. 36, no. 5, pp. 691—697. DOI: 10.1016/j.compgeo.2008.11.004.

17. Rashed G., Slaker B., Sears M. M., Murphy M. M. A parametric study for the effect of dip on stone mine pillar stability using a simplified model geometry. Mining, Metallurgy & Exploration. 2021, vol. 38, no. 2, pp. 967—977. DOI: 10.1007/s42461-021-00394-y.

18. Hamediazad F., Bahrani N. Simulation of hard rock pillar failure using 2D continuumbased Voronoi tessellated models: The case of Quirke Mine, Canada. Computers and Geotechnics. 2022, vol. 148, article 1048. DOI: 10.1016/j.compgeo.2022.104808.

19. Li X., Kim E., Walton G. A study of rock pillar behaviors in laboratory and in-situ scales using combined finite-discrete element method models. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 118, pp. 21—32. DOI: 10.1016/j.ijrmms.2019.03.030.

20. Zenkevich O. Metod konechnykh elementov v tekhnike [The finite element method in engineering], Moscow, Mir, 1975, 541 p.

21. Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The finite element method: Its basis and fundamentals. 7th edition. Oxford: Butterworth-Heinemann, 2013. 756 p.

22. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob"ektov v usloviyakh Verkhnekamskogo mestorozhdeniya kaliynykh soley (tekhnologicheskiy reglament) [Instructions on water flood protection of mines and conservation of undermined objects in conditions of Verkhnekamskoe Potash Deposit], Saint-Petersburg, 2014, 130 p. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.