Evaluating the flow properties of self-compacting mortars using a new optical method

The flow properties of mortars containing different amounts of superplasticizer and viscosity modifying agent are investigated using a new optical method based on the flow/ spread table method. The flow of the mortars is tracked down using a high-speed camera and the flow curves are generated using post-processing software. Our findings show that the optical method has a very high accuracy in estimating the flow behavior of cementitious materials at each point in time, while bringing also new features to the traditional method. The flow behavior of the mortars containing different amounts of superplasticizer (SP) and viscosity modifying agent (VMA) investigated with the optical method confirmed the findings of previous studies. The addition of superplasticizer improved the workability of the mortars but had the adverse effect of bleeding and segregation. The addition of the viscosity modifying agent helped against these phenomena, but care must be taken with the amount used, as the viscosity modifying agent drastically affected the flow behavior of the investigated mortars.

Keywords: Self-compacting concrete, workability, yield stress, plastic viscosity, flow table, superplasticizer, viscosity modifying agent.
For citation:

Metallari A., Wahab M., Bier T. A. Evaluating the flow properties of self-compacting mortars using a new optical method. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):194—204. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_194.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 194-204
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_194
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Metallari A.1 , Cand. Sci. (Eng.), Researcher, e-mail: alban.metallari@ikfvw.tu-freiberg.de;
Wahab M.1 , Dr. Sci (Rer.nat.), Researcher, e-mail: mirco.wahab@ikfvw.tu-freiberg.de;
Bier T. A.1 , Dr. Sci. (Eng.), Professor, Head of Laboratory, e-mail: thomas.bier@ikfvw.tu-freiberg.de;
1 Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany.

 

For contacts:

Metallari A., e-mail: alban.metallari@ikfvw.tu-freiberg.de.

Bibliography:

1. Ferraris, C. F., Martys, N. S. (2012). Concrete rheometers. Rheology of cement and concrete, Woodhead Publishing , Cambridge, 63–82.

2. Roussel, N. (2012). Understanding the Rheology of Concrete. Materials Science, Engineering, 355 364.DOI: 10.1533/9780857095282.

3. Abrams, D. A. (1919). Design of Concrete Mixtures, Structural Materials Research Laboratory, 1.

4. Bartos, P. J., Sonebi, M., Tamimi, A. (2002). Workability and Rheology of Fresh Concrete: Compendium of Test, RILEM Rep. — TC145 WSM, 156.

5. Graf, O. (1935). Versuche über das Verhalten von Eisenanlagen in Beton verschiedener Zusammensetzung, Deutscher Ausschuss für Eisenbeton, 71, 37–60.

6. Thrane, L. N., Szabo, P., Geiker, M., Glavind, M., Stang, H. Simulation of the test method ‘L-box’ for self-compacting concrete, Annu. Trans. Nord. Rheol. Soc., 12, 47–54.

7. Souza, S. R., Barcelos, H. J., Santos, W. J. (2018). Passing Ability Testing for SelfCompacting Concrete. Int. J. Sci. Eng. Investig, 7, 69–74.

8. Ahmad, S., Umar, A. (2017). Characterization of Self-Compacting Concrete. Proced. Eng, 173, 814–821.

9. DIN EN 12350−9.(2010). Testing fresh concrete — Part 9: Self-compacting concrete — V-Funel test.

10. DIN EN 12350−10. (2010). Testing fresh concrete — Part 10: Self-compacting concrete — L box test.

11. Wallevik, O. H., Wallevik, J. E. (2011). Rheology as a tool in concrete science: The use of rheographs and workability boxes. Cement and Concrete Research, 41, 1279–128.

12. Leemann, A., Winnefeld, F. (2006). Influence of workability and admixtures on the segregation of concrete during compaction, Conference: 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. DOI: 10.1617/2351580028.069.

13. Roussel, N., Bessaies-Bey, H., Kawashima, S., Marchon, D., Vasilic, K., Wolfs, R. Recent advances on yield stress and elasticity of fresh cement-based materials, Cem. Concr. Res., 124, 105–116, (2019).

14. Palacios, M., Flatt, R. J., Puertas, F., Sanchez-Herencia, A. (2012). Compatibility between polycarboxylate and viscosity-modifying admixtures in cement pastes, Materials Science.Cement & Concrete Composites, 288, 29–42. DOI: 10.1016/J. CEMCONCOMP.2012.08.020.

15. Bessaies-Bey, H., Palacios, M., Pustovgar, E., Hanafi, M., Baumann, R., Flatt, R. J., Roussel, N. (2018). Non-adsorbing polymers and yield stress of cement paste: Effect of depletion forces. Cement and Concrete Research, 111, 209–217. DOI: 10.1016/j. cemconres.2018.05.004.

16. Kolawole, J. T.(2020). The influence of rheology on the cracking of plastic concrete,” PhD Thesis.

17. Adjoudj, M., Ezziane, K., Kadri, E. H., Ngo, T. T., Kaci, A. (2014). Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer. Construction and Building Materials, 70, 549–559. DOI: 10.1016/j.conbuildmat.2014.07.111.

18. Kolawole, J. T., Combrinck, R., Boshoff, W. P. (2019). Measuring the thixotropy of conventional concrete: The influence of viscosity modifying agent, superplasticiser and water, Construction and Building Materials, 225, 853–867. DOI: 10.1016/j.conbuildmat.2019.07.240.

19. Ferrari, L., Kaufmann, J.,Winnefeld, F., Plank, J. (2011). Multi-method approach to study influence of superplasticizers on cement suspensions. Cement and Concrete Research, 41(10), 1058–1066. DOI: 10.1016/j.cemconres.2011.06.010.

20. Perrot, A., Lecompte, T., Khelifi, H., Brumaud, C., Hot, J., Roussel, N. (2012). Yield stress and bleeding of fresh cement pastes. Cement and Concrete Research, 42 (7), 937–944. DOI: 10.1016/j.cemconres.2012.03.015.

21. Khayat, K. H., Hwang, S. D., Belaid, K. (2010). Performance of cast-in-place self-consolidating concrete made with various types of viscosity-enhancing admixtures, Conference: 3rd International RILEM Symposium on Self-Compacting Concrete, 107, 403– 412, (2010). DOI: 10.13140/2.1.1819.1043.

22. Naji, S., Hwang, S. D., Khayat, K. H. (2011). Robustness of self-consolidating concrete incorporating different viscosity-enhancing admixtures. Aci Materials Journal, 108, 432–438.

23. Rols, S., Ambroise, J., Péra, J. (1999). Effects of different viscosity agents on the properties of self-leveling concrete, Cement and Concrete Research, 29, 261–266. DOI: 10.1016/S0008−8846(98)00095−7.

24. Lachemi, M., Hossain, K. M. A., Lambros, V., Nkinamubanzi, P. C., Bouzoubaâ, N. (2004). Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cement and Concrete Research, 34 (2), 185–193. DOI: 10.1016/ S0008−8846(03)00233−3.

25. Raja, U. M., Bier, T. A., Rizwan, S. A. (2021). Assessing Rheology of Self-Compacting Paste Systems–A New Approach. Aci Materials Journa, 118, 1–12. DOI: 10.14359/51732793.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.