Statistical dynamics-based estimation of ventilation control in coal mines

Mine ventilation is intended to ensure sufficient air flow rates in working areas at any time to assure safe and normal duty of mining processes. Mine ventilation control consists in design and implementation of long-term (one-time) arrangements for the stable topology and gas dynamics conditions, and for the quick-look re-distribution of air flows in ventilation network branches subject to deviation of test parameters of mine air from the technologybased standards of mine safety and operational regulations. This research aims to analyze and estimate aerodynamic parameters of air distribution control in coal mines. The research uses the methods of statistical dynamics, correlation functions of random variables, theory of sets, basic laws of mine air dynamics, theory of graphs and discrete mathematics. A proper choice of the method to determine dynamic characteristics using the normal duty data requires checking additivity of gas-dynamic processes, i.e., it is required to find out whether the gas-dynamic processes contain components which give rise to correlation function tails. An approach is proposed to the air distribution control improvement in mine roadways with regard to ventilation network details.

Keywords: ventilation systems, coal mines, gas emission, integral equations, extraction panel, methane concentration, air flow rate.
For citation:

Bosikov I. I., Klyuev R. V., Azhmukhamedov I. M., Revazov V. Ch. Statistical dynamics-based estimation of ventilation control in coal mines. MIAB. Mining Inf. Anal. Bull. 2021;(11):123-135. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_123.

Acknowledgements:
Issue number: 11
Year: 2021
Page number: 123-135
ISBN: 0236-1493
UDK: 622:577.4
DOI: 10.25018/0236_1493_2021_11_0_123
Article receipt date: 14.05.2021
Date of review receipt: 06.07.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

I.I. Bosikov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: igor.boss.777@mail.ru,
R.V. Klyuev, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: kluev-roman@rambler.ru, Moscow Polytechnic University, 107023, Moscow, Russia,
I.M. Azhmukhamedov, Dr. Sci. (Eng.), Professor, Dean of Faculty of Digital Technologies and Cybersecurity, Astrakhan State University, 414056, Astrakhan, Russia, e-mail: aim_agtu@mail.ru,
V.Ch. Revazov1, Cand. Sci. (Eng.), Assistant Professor,
1 North Caucasian Institute of mining and metallurgy (State Technological University), 362021, Vladikavkaz, Russia.

For contacts:

I.I. Bosikov, e-mail: igor.boss.777@mail.ru.

Bibliography:

1. Puchkov L. A., Kaledina N. O., Kobylkin S. S. System solutions to ensure methane safety of coal mines. Gornyi Zhurnal. 2014, no. 5, pp. 12—14. [In Russ].

2. Semin M. A., Levin L. Yu. Stability of air flows in mine ventilation networks. Process Safety and Environmental Protection. 2019, vol. 124, pp. 167—171. DOI: 10.1016/j.psep.2019.02.006.

3. Thakur P. Underground coal mine atmosphere. Advanced mine ventilation. Respirable coal dust, combustible gas and mine fire control. Woodhead Publishing, 2019, pp. 3—16. DOI: 10.1016/B978-0-08-100457-9.00001-8.

4. Cheng L., Guo H., Lin H. Evolutionary model of coal mine safety system based on multiagent modeling. Process Safety and Environmental Protection. 2021, vol. 147, pp. 1193—1200. DOI: 10.1016/j.psep.2021.01.046.

5. Esterhuizen G. S., Gearhart D. F., Klemetti T., Dougherty H., Dyke M. Analysis of gateroad stability at two longwall mines based on field monitoring results and numerical model analysis. International Journal of Mining Science and Technology. 2019, vol. 29, no. 1, pp. 35—43. DOI: 10.1016/j.ijmst.2018.11.021.

6. Wang K., Jiang Sh., Wu Zh., Shao H., Zhang W., Pei X., Cui Ch. Intelligent safety adjustment of branch airflow volume during ventilation-on-demand changes in coal mines. Process Safety and Environmental Protection. 2017, vol. 111, pp. 491—506. DOI: 10.1016/j.psep.2017.08.024.

7. Qiao W. Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory. Reliability Engineering & System Safety. 2021, vol. 208, article 107433. DOI: 10.1016/j.ress.2021.107433.

8. Zhang L., Zhou G., Ma Yu, Jing B., Sun B., Han F., He M., Chen Xu. Numerical analysis on spatial distribution for concentration and particle size of particulate pollutants in dust environment at fully mechanized coal mining face. Powder Technology. 2021, vol. 383, pp. 143—158. DOI: 10.1016/j.powtec.2021.01.039.

9. Klyuev R. V., Bosikov I. I., Mayer A. V., Gavrina O. A. Comprehensive analysis of the effective technologies application to increase sustainable development of the natural-technical system. Sustainable Development of Mountain Territories. 2020, no. 2, pp. 283—290. [In Russ].

10. Klyuev R. V., Bosikov I. I., Egorova E. V., Gavrina O. A. Assessment of mining-geological and mining technical conditions of the Severny pit with the use of mathematical models. Sustainable Development of Mountain Territories. 2020, no. 3, pp. 418—427. [In Russ]. DOI: 10.21177/1998-4502-2020-12-3-418-427.

11. Mashintsov E. A., Kotlerevskaya L. V., Krinichnaya N. A. Ventilation control in a coal mine. News of the Tula state university. Technical sciences. 2014, no. 7, pp. 188—195. [In Russ].

12. Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 78–89. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-78-89.

13. Kaledina N. O. Justification of the parameters of ventilation systems of high-performance coal mines. MIAB. Mining Inf. Anal. Bull. 2011, no. 7, pp. 261—271. [In Russ].

14. Bahvalov L. A., Barannikova I. V., Agabubayev A. T. Review of the modern systems of automated ventilation control. MIAB. Mining Inf. Anal. Bull. 2017, no. 7, pp. 22—28. [In Russ]. DOI: 10.25018/0236-1493-2017-7-0-22-28.

15. Bosikov I. I., Klyuev R. V., Khetagurov V. N., Azhmukhamedov I. M. Development of methods and management tools aerogasdynamics processes at mining sites. Sustainable Development of Mountain Territories. 2021, no. 1, pp. 77—83. [In Russ]. DOI: 10.21177/1998-45022021-13-1-77-83.

16. Vasenin I. M., Shrager E. R., Krainov A. Yu., Paleev D. Yu., Lukashov O. Yu., Kosterenko V. N. Mathematical modeling of non-stationary ventilation processes of the coal mine workings network. Computer Research and Modeling. 2011, vol. 3, no. 2, pp. 155—163. [In Russ].

17. Mashintsov E. A., Kotlerevskaya L. V. Krinichnaya N. A. Management of ventilation in the coal mine as difficult system. News of the Tula state university. Technical sciences. 2014, no. 7, pp. 188—195. [In Russ].

18. Kharik E. K., Astanin A. V. Numerical study of ventilation of a coal mine in a threedimensional setting. Vestnik of Lobachevsky University of Nizhni Novgorod. 2011, no. 4-5, pp. 2567—2569. [In Russ].

19. Rychkovsky V. M., Sergeev O. A., Tyurin V. P. On ventilation control at coal mines of Kuzbass. Occupational Safety in Industry. 2004, no. 11, pp. 8—9.

20. Sjöström S., Klintenäs E., Johansson P., Nyqvist J. Optimized model-based control of main mine ventilation air flows with minimized energy consumption. International Journal of Mining Science and Technology. 2020, vol. 30, no. 4, pp. 533—539. DOI: 10.1016/j. ijmst.2020.05.016.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.