Slope stability analysis of pit wall meant for mine infrastructure site

Long-term deformation monitoring (since 2018) of a pit wall area meant for accommodation of a mine infrastructure site is reported. The actual condition of the pit wall is assessed, and clay rocks are sampled in exposures. The lab-scale studies into physical and mechanical properties of clay composing the pit wall are described. Based on the laboratory tests, review of graphic documentation and in-situ observations of the deformation area, the influence of the natural and manmade geometry on the state of clay rocks is analyzed. The causes of the pit wall deformations are evaluated. The shear resistance at bedding interfaces is estimated using the back-calculation. The calculated pit wall parameters based on the slope stability criterion are recommended for the mine infrastructure site. The pit wall stability maintenance activities are developed for small width berms of benches. Designs of structures to maintain the clay rock pit wall stability are presented: a retaining wall and a gabion wire mesh. Based on the calculations, efficiency of gabions is justified as they allow decreasing the width of an area for a retaining structure to prevent deformations of clay rock slope.

Keywords: clay rocks, pit wall, benches, stability, deformation, retaining structure designs.
For citation:

Bakhaeva S. P., Gur'ev D. V. Slope stability analysis of pit wall meant for mine infrastructure site. MIAB. Mining Inf. Anal. Bull. 2021;(1):32-42. [In Russ]. DOI: 10.25018/02361493-2021-1-0-32-42.

Acknowledgements:
Issue number: 1
Year: 2021
Page number: 32-42
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236-1493-2021-1-0-32-42
Article receipt date: 20.08.2020
Date of review receipt: 02.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.12.2020
About authors:

S.P. Bakhaeva, Dr. Sci. (Eng.), Head of Laboratory, JSC «Scientific-research Institute of mining geomechanics and mine surveying — Intersectoral scientific center VNIMI», Siberian branch, 653004, Prokopyevsk, Russia, e-mail: baxaevas@mail.ru,
D.V. Gur'ev, Cand. Sci. (Eng.), Assistant Professor, e-mail: gurevdv@gmail.com, T. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia.

 

For contacts:

D.V. Gur'ev, e-mail: gurevdv@gmail.com.

Bibliography:

1. Gridina E. B., Kuznetsova O.A. Analysis of landslide causes and possible evolution in open pit mining in Russia. Marksheyderiya i nedropol'zovanie. 2018, no 3, pp. 49—51. [In Russ].

2. Olyanskiy Yu. I., Bogomolov A. N., Shchekochikhina E. V., Kuz'menko I. Yu., Tikhonova T. M. Features of change in composition and properties of loess soil during long-term interaction with water consequent on technogenesis: A case-study of the Prut and Dniester interstream area. Inzhenernye izyskaniya. 2016, no 14, pp. 24—34. [In Russ].

3. Oparin V. N., Adushkin V. V., Yushkin V. F., Potapov V. P. Influence of natural climate and mining-induced impact on mechanical erosion and seismic noise in the areas of open pit coal mines in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2019, no 9, pp. 72—101. [In Russ]. DOI: 10.25018/0236-1493-2019-090-72-101.

4. Sivakumar G. L., Mukesh M. D. Effect of soil variability on reliability of soil slopes. Geotechnique. 2004. Vol. 54. No 5. Pp. 335—337.

5. Cho S. E. Effects of spatial variability of soil properties on slope stability. Engineering Geology. 1992. Vol. 92. Pp. 97—109.

6. Bakhaeva S. P., Gu'rev D. V. Filling dam stability prediction with regard to special variability of strength of loamy soil. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2020, no 1, pp. 23—33. [In Russ]. DOI: 10.15372/FTPRPI20200103.

7. Prostov S., Karablin М., Gurev D. Automated stability analysis of soil slopes. E3S Web of conferences. IVth International Innovative Mining Symposium. 2019. Vol. 105. Article 01015. DOI: 10.1051/e3sconf/ 201910501015.

8. Bakhaeva S., Chernykh E. Study of the conditions for construction of the haulage berm in the deposit ledger-wall. E3S Web of Conferences. IVth International Innovative Mining Symposium. 2019. Vol. 105. Article 01034. DOI: 10.1051/e3sconf/201910501034.

9. Sokolov M., Karablin M. Prediction of the Geomechanical State of the Fixed Ground Basis of a Mining Building. E3S Web of Conferences. IVth International Innovative Mining Symposium. 2019. Vol. 105. Article 01034. DOI: 10.1051/e3sconf/201910501036.

10. Polovov B., Valiev N., Volkov M., Lebzin M. Assessment practice of geomechanical risks for slopes and retaining walls. E3S Web of Conferences. XVIII Scientific Forum «Ural Mining Decade». 2020. Vol. 177. Article 01003. DOI: 10.1051/e3sconf/202017701003.

11. Patachakov I. V., Boos I. Yu., Furtak A. A. Determination of strength characteristics of rocks by back-calculation in terms of the Gorevka lead–zinc deposit. Marksheyderiya i nedropol'zovanie. 2018, no 1, pp. 41—44. [In Russ].

12. Shpakov L. N. Back-calculation in slope stability assessment in open pit mines. MIAB. Mining Inf. Anal. Bull. 1997, no 1, pp. 88—92. [In Russ].

13. Zhang T. D., Tang W. H., Zhang L. M. Efficient probabilistic back-analysis of slope stability model parameters. Journal of Geotechnical and Geoenvironmental Engineering. 2010. Vol. 136. No 1. Pp. 99—109.

14. Pavlovich A. A. Methods of strength determination in rock mass in open pit mining. Journal of Mining Institute. 2010, no 185, pp. 127—131. [In Russ].

15. Tishchenko A. I., Senchukov G. A., Gostishchev V. D., Chelakhov V. Ts. Gabion retaining wall stability design to protect the Tsimlyansk Reservoir banks from wearing away. Ekologiya i vodnoe khozyaystvo. 2019, no 2(02), pp. 81—99. [In Russ]. DOI: 10.31774/2658-7890-20192-81-99.

16. Komarov A. K., Ivanov I. A., Lundenbazar B. Gabion-based protective structures: Theory and practice. Izvestiya vuzov. Investitsii. Stroitel'stvo. Nedvizhimost'. 2019, no 1 (28), pp. 78—89. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.