Effect of operational parameters of spraying on dust suppression rate in roadways

Authors: Kurnosov I Y

Air-borne coal dust is a serious threat to both coal mine personnel and equipment. There is a variety of air dust reduction activities (liquid spraying, air filtering, oil/water/grill/paper trapping of dust, centrifugal dust collection or use of dust-catching chambers), but they are not always effective, especially in solving specific tasks (short-time dust removal). A possible solution to this end can be the pulse ventilation, which is used to remove methane from mine air, in combination with liquid spraying. This article describes the lab-scale tests of dust suppression by spraying. Coal mines use liquid spraying, and this approach is therefore tested on a laboratory scale. The deposition time of water aerosol is determined. For estimating efficiency of dust suppression and to control water aerosol concentrations, the time functions of average concentrations of dust/water and water aerosols are obtained and described by formulas.

Keywords: modeling, coal dust, pulse ventilation, liquid spraying, mass transfer, suppression test, water aerosol, dust/water aerosol.
For citation:

Kurnosov I. Y. Effect of operational parameters of spraying on dust suppression rate in roadways. MIAB. Mining Inf. Anal. Bull. 2023;(3):150-162. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_150.

Acknowledgements:
Issue number: 3
Year: 2023
Page number: 150-162
ISBN: 0236-1493
UDK: 622.807
DOI: 10.25018/0236_1493_2023_3_0_150
Article receipt date: 16.12.2022
Date of review receipt: 21.01.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

I.Y. Kurnosov, Graduate Student, Assistant, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: kurnosovilya@yandex.ru, ORCID ID: 0000-0002-7618-6839.

 

For contacts:
Bibliography:

1. Balovtsev S. V. Aerological risk assessment in working areas of gas and dust explosionhazardous coal mines. Gornyi Zhurnal. 2015, no. 5, pp. 91—93. [In Russ]. DOI: 10.17580/ gzh.2015.05.19.

2. Skopintseva O. V., Vertinskiy A. S., Ilyakhin S. V., Savelev D. I., Prokopovich A. Yu. Substantiation of efficient parameters of dust-controlling processing of coal massif in mines. Gornyi Zhurnal. 2014, no. 5, pp. 17—20. [In Russ].

3. Kornev A. V., Ledyaev N. V., Kabanov E. I., Korneva M. V. Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 115—134. [In Russ]. DOI: 10.25018/02 36_1493_2022_62_0_115.

4. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

5. Rodionov V., Tumanov M., Skripnik I., Kaverzneva T., Pshenichnaya C. Analysis of the fractional composition of coal dust and its effect on the explosion hazard of the air in coal mines. IOP Conference Series: Earth and Environmental Science. 2022, vol. 981, no. 3, article 032024. DOI: 10.1088/1755-1315/981/3/032024.

6. Zihao Xiu, Wen Nie, Jiayi Yan, Dawei Chen, Peng Cai, Qiang Liu, Tao Du, Bo Yang Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production. Journal of Cleaner Production. 2020, vol. 248, article 119197. DOI: 10.1016/j.jclepro.2019.119197.

7. Filin A. E., Ovchinnikova T. I., Zinovieva O. M., Merkulova A. M. Advance of pulsating ventilation in mining. Gornyi Zhurnal. 2020, no. 3, pp. 67—71. [In Russ]. DOI: 10.17580/gzh.2020.03.13.

8. Skopintseva O. V., Ganova S. D., Buzin A. A., Fedotova V. P. Measures to reduce dusting during loading and transportation of solid mineral resources. Gornyi Zhurnal. 2019, no. 12, pp. 76—79. [In Russ]. DOI: 10.17580/gzh.2019.12.16.

9. Vishnevskaya E. P., Nikolayev A. A., Dobryakova N. N., Bannikov A. A. Methods for assessing the wettability of coal with dust suppression solutions. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 17—25. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-17-25.

10. Zholmanov D. K., Zinovieva O. M., Merkulova A. M., Smirnova N. A. Assessment of risk management efficiency in mines. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 166—176. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_166.

11. Li Q., Wang K., Zheng Y., Ruan M., Mei X., Lin B. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust. Powder Technology. 2016, vol. 292, pp. 290—297. DOI: 10.1016/j.powtec.2016.01.035.

12. Kharitonov I. L., Tereshkin A. I., Kornev A. V., Korshunov G. I., Korneva M. V. Development of measures on the improvement of dust environment in the coal mines working faces. Occupational Safety in Industry. 2019, no. 12, pp. 53—59. [In Russ]. DOI: 10.24000/0409-29612019-12-53-59.

13. Zhou G., Luan G., Li S., Liu Zh., Zhang Qi, Miao Ya. Experimental investigation on the micro wettability of coal dust: considering the comprehensive effects of physical chemistry characteristics. Arabian Journal of Geosciences. 2022, vol. 15, article 1102. DOI: 10.1007/s12517022-10352-7.

14. Han H., Wang P., Liu R., Tian Ch. Experimental study on atomization characteristics and dust-reduction performance of four common types of pressure nozzles in underground coal mines. International Journal of Coal Science & Technology. 2020, vol. 7, pp. 581—596. DOI: 10.1007/s40789-020-00329-w.

15. Filin A. E., Kurnosov I. Yu., Kolesnikova L. A., Ovchinnikova T. I., Kolesnikov A. S. Description of the methodology for conducting an experiment on dust deposition of mining and metallurgical production. Ugol’. 2022, no. 9, pp. 67—72. [In Russ]. DOI: 10.18796/0041-57902022-9-67-72.

16. Krasilova V. A., Epshtein S. A., Kossovich E. L., Kozyrev M. M., Ionin A. A. Development of method for coal dust particle size distribution characterization by laser diffraction. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 5—16. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_5.

17. Pengfei Wang, Han Han, Ronghua Liu, Yongjun Li, Xuanhao Tan Effects of metamorphic degree of coal on coal dust wettability and dust-suppression efficiency via spraying. Advances in Materials Science and Engineering. 2020, vol. 2020, article 4854391. DOI: 10.1155/2020/4854391.

18. Wang J., Zhou G., Wei X., Wang S. Experimental characterization of multi-nozzle atomization interference for dust reduction between hydraulic supports at a fully mechanized coal mining face. Environmental Science and Pollution Research. 2019, vol. 26, no. 10, pp. 10023—10036.

19. Chen B., Wang X., Yuan Y. Adaptive system analysis of coal mine spray dust reduction based on intelligent analysis algorithm. Application of Intelligent Systems in Multi-modal Information Analytics. ICMMIA 2022. Lecture Notes on Data Engineering and Communications Technologies. 2022, vol. 138. Springer, Cham. DOI: 10.1007/978-3-031-05484-6_21.

20. Xiaoxue Liao, Bo Wang, Liang Wang, Jintuo Zhu, Peng Chu, Zibin Zhu, Siwen Zheng Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control. ACS Omega. 2021, vol. 6, no. 34, pp. 21925—21938. DOI: 10.1021/ acsomega.1c02205.

21. Barone T. L., Hesse E., Seaman S. E., Baran A. J., Beck T. W., Harris M. L., Jaques P. A., Lee T., Mischler S. E. Calibration of the cloud and aerosol spectrometer for coal dust composition and morphology. Advanced Powder Technology. 2019, vol. 30, no. 9, pp. 1805—1814. DOI: 10.1016/j.apt.2019.05.023.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.