Influence of material composition of biological pond bed on waste water treatment in mining and metallurgy industries

For the remediation of anthropogenically contaminated objects, for wastewater treatment and reclamation of disturbed lands, it is necessary to investigate effectiveness of artificial geochemical barriers. The latter can be constructed using rocks, soils, clay soils, various industrial waste and manmade soils. To this effect, within the framework of the research, the possibility of using industrial waste (dunite mining waste and ash-and-slag) widespread in the Great Urals region as a sorbent was considered. In order to assess usability of industrial waste for the treatment of wastewater generated during copper–pyrite ore mining, samples taken in the territory of mined-out Degtyarskoe deposit of copper–pyrite ores were used as model solutions. The calculation of the static exchange capacity of potential sorbents has been carried out, and the degree of extraction of the pollutant from water has been assessed. According to the analysis of the obtained experimental data, the tendency of the sorption process is traceable. The test samples exhibited maximal static exchange capacity (SEC) and copper extractability (E): SEC from 23.1 to 30.7 mg/kg and E is 100 %. The data obtained are the basis for the development of methods for the ecological rehabilitation of disturbed ecosystems, in particular, in assessment of usability of industrial waste in construction of beds for biological ponds for the treatment of waste water from mining and metallurgical plants.

Keywords: heavy metals, adsorption, waste water, environmental protection, sorption of copper, bioponds, copper accumulation, dunite, ash-and-slag.
For citation:

Sobenin A. V., Antoninova N. Yu., Usmanov A. I., Shepel K. V. Influence of material composition of biological pond bed on waste water treatment in mining and metallurgy industries. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):273—282. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_273.

Acknowledgements:

The article was prepared within the framework of the RFBR grant No. 20-45660014 «Research of migration patterns and accumulation of heavy metals in natural systems experiencing local technogenic load of mining and metallurgical enterprises in order to develop effective methods of their environmental rehabilitation» and with the financial support of the Government of the Sverdlovsk region.

Issue number: 5
Year: 2021
Page number: 273-282
ISBN: 0236-1493
UDK: 622.268:504.06
DOI: 10.25018/0236_1493_2021_52_0_273
Article receipt date: 27.01.2021
Date of review receipt: 26.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Sobenin A. V.1, Junior Research at the Mining Ecology Laboratory, arsob@yandex.ru;
Antoninova N. Yu.1, Cand. Sci. (Eng.), Head of the Mining Ecology Laboratory, natal78@list.ru;
Usmanov A. I.1, Junior Research at the Mining Ecology Laboratory;
Shepel K. V.1, Junior Research at the Mining Ecology Laboratory;
1 Institute of Mining, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia

 

For contacts:
Bibliography:

1. Khokhryakov AV et al. A systematic approach to ensuring environmental safety in the mining industry. MIAB. Mining Inf. Anal. Bull. 2020. no. 3—1. p. 501. DOI: 10.25018 / 0236—1493—2020—31—0-501—517. [In Russ]

2. Rybnikova L.S., Rybnikov P. A. Problems of self-rehabilitation of the hydrosphere and purification of mining water at the post-operating stage (on the example of the Levikhinsky mine, Sredny Ural). MIAB. Mining Inf. Anal. Bull. 2020. no. 3—1. pp. 488—500. DOI: 10.25018 / 0236—1493—2020—31—0-488—500. [In Russ]

3. Perelman A. I. Geohimiya landshafta [Landscape geochemistry]. Moscow: Higher. shk., 1961. [In Russ]

4. Antoninova N. Yu., Sobenin AV, Shubina la assessment of the possibility of using industrial waste in formation of geochemical barriers. MIAB. Mining Inf. Anal. Bull. 2020. no. 12. S. 78—88. DOI: 10.25018 / 0236—1493—2020—12—0-78—88. [In Russ]

5. Kornilkov S., Antoninova N.,  Sobenin A. Assessment  of  the  sorption  potential of the plant l. Sativum l. In the process of formation of the biogeochemical barrier. VIII International Scientific Conference “Problems of Complex Development of Georesources” (PCDG 2020). 2020. С. 04020. https:. doi.org/10.1051/e3sconf/202019204020.

6. Velasco-Garduño O. et al. Copper removal from wastewater by a chitosan-based biodegradable composite. Environmental Science and Pollution Research. 2020. pp. 1—9. https:. doi.org/10.1007/s11356—019—07560—2.

7. Gogoi, H., Leiviskä, T., Heiderscheidt, E., Postila, H., & Tanskanen, J. (2018). Тhe Еffectiveness of Metal and Metalloid Sorption from Mining Influenced Waters by Natural and Modified Peat. Mine Water and the Environment. doi:10.1007/s10230—018—0525—1.

8. Sreedhar I., Reddy N. S. Heavy metal removal from industrial effluent using biosorbent blends. SN Applied Sciences. 2019. Т. 1. no. 9. pp. 1—15. https:. doi.org/10.1007/ s42452—019—1057—4.

9. Ferronato C. et al. Vermiculite bio-barriers for Cu and Zn remediation: an eco-friendly approach for freshwater and sediments protection. International journal of environmental science and technology. 2016. Т. 13. no. 5. pp. 1219—1228. https:. doi.org/10.1007/ s13762—016—0957—8.

10. Khosravi A. et al. Removal of heavy metals by Escherichia coli (E. coli) biofilm placed on zeolite from aqueous solutions (case study: the wastewater of Kerman Bahonar Copper Complex). Applied Water Science. 2020. Т. 10. no. 7. pp. 1—8. https:. doi. org/10.1007/s13201—020—01257—5.

11. Tamjidi S., Ameri A. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environmental Science and Pollution Research. 2020. Т. 27. no. 25. pp. 31105—31119. https:. doi.org/10.1007/ s11356—020—09655—7.

12. Kim B. S. et al. Removal of Cu 2+ by biochars derived from green macroalgae. Environmental Science and Pollution Research. 2016. Т. 23. no. 2. pp. 985—994. https:. doi. org/10.1007/s11356—015—4368-z.

13. Saber, M., Takahashi, F., & Yoshikawa, K. (2018). Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu (II) ion removal from aqueous solutions. Environmental Science and Pollution Research. doi:10.1007/s11356—018— 3106—8.

14. Vishnevetsky  V.Yu.,  Popruzhny  V.  M.  Ocenka  vliyaniya  soderzhaniya  medi v prirodnoj vode v rajone vodozaborov goroda Taganroga i Taganrogskom zalive Azovskogo morya na zdorov’e cheloveka [Assessment of the impact of copper content in natural water in the area of water intakes of the city of Taganrog and the Taganrog Bay of the Azov Sea on human health]. IVD. 2017. no. 4 (47). p. 43. [In Russ]

15. Ivanishchev V.V. Bioakkumulyaciya, gomeostaz i toksichnost’ medi v rasteniyah [Bioaccumulation, homeostasis and toxicity of copper in plants]. Izvestiya Tul’skogo gosudarstvennogo universiteta. Estestvennye nauki. 2020. no. 1. pp. 33—41. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.