Evaluation of the cavity abutment zone during the mining of small and medium-sized steepfalling veins

The existing approaches to estimation of rock deformation parameters in the zone of influence of mine workings during underground mining of steeply dipping veins of small and medium thickness have been analysed. Taking into account these approaches, as well as the experience of mining operations, the linear and angular parameters of the zone of dangerous deformations in the vicinity of the mine workings were calculated. The calculated linear parameters of the zone of dangerous deformations are: in the hanging side of the vein 6 thicknesses of the vein, lying side 2.6 and in the ceiling 4 thicknesses. Estimated shear angles are 1 as follows: in case of extraction of small capacity veins δ = 75º; δ = 70º; δ1= 70º; for medium 1 capacity veins δ = 70º; δ = 65º; δ1 = 65º. The calculated parameters of the zone of dangerous deformations are proposed to be used in the construction of protection pillars for objects of II and III categories of protection at mines. Mathematical modelling by the finite element method was carried out. According to the results of modelling, the dimensions of the immediate collapse zone in the sides of the mine workings were specified as 3–5 m, regardless of the thickness of the vein. The obtained dimensions of the collapse zone are proposed to be used in calculations of the stability of preparation and cuttings with a short service life, as well as the parameters of fixing of the cleaning workings themselves.

Keywords: steeply dipping veins, ore, dangerous rock strains and stresses, deformation, rock shear angles, finite element modelling; mining out area.
For citation:

Sosnovskaya E. L., Avdeev A. N. Evaluation of the cavity abutment zone during the mining of small and medium-sized steepfalling veins. MIAB. Mining Inf. Anal. Bull. 2024;(7-1):48-57. [In Russ]. DOI: 10.25018/0236_1493_2024_71_0_48.

Acknowledgements:

The research was carried out within the framework of State Assignment No. 075-00412-22 PR, topics 3 (2022–2024). (FUWE-2022-0003), reg. No. 1021062010536-3-1.5.1.

Issue number: 7
Year: 2024
Page number: 48-57
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236_1493_2024_71_0_48
Article receipt date: 07.03.2024
Date of review receipt: 23.04.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

E.L. Sosnovskaya1, Cand. Sci. (Geol. Mineral.), Senior Researcher, ORCID ID: 0000-0003-4795-1383,
A.N. Avdeev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: avdeev0706@mail.ru, ORCID ID: 0000-0003-1023-7645,
1 Institute of Mining of the Ural Branch of the Russian Academy of Sciences, 620075, Ekaterinburg, Russia.

 

For contacts:

A.N. Avdeev, e-mail: avdeev0706@mail.ru.

Bibliography:

1. Shadrin A. G. Teoriya i raschet sdvizheniya gornykh porod i zemnoy poverkhnosti [Theory and calculation of rock and earth surface shear], Krasnoyarsk, Izd-vo Krasnoyarskogo universiteta, 1990, 200 p.

2. Gadde Murali Floor stability in underground coal mines. Taylor&Francis, 2020, 215 p.

3. Aydan Oemer Rock mechanics and rock engineering. Taylor&Francis, 2019, 380 p.

4. Tekhnologiya razrabotki zolotorudnykh mestorozhdeniy. Pod red. V. P. Neganova [Technology of the gold fields mining. Neganov V. P. (Ed.)], Moscow, Nedra, 1995, 336 p.

5. Avdeev A., Sosnovskaya E. Geomechanical conditions of vein gold deposits in permafrost zone.

E3S Web of Conferences. 2020, vol. 192, article 01026. DOI: 10.1051/e3sconf/202019201026.

6. Sosnovskaia E. L., Avdeev A. N. Forecast of potential rockburst hazard during the reconstruction of the Yugo-Zapadnaya mine at the Darasun deposit. Minerals and Mining Engineering. 2020, no. 4, pp. 5—11.

7. Pavlov A. M. Sovershenstvovanie tekhnologii podzemnoy razrabotki zhil'nykh mestorozhdeniy zolota [Upgrading the technology of gold deposits underground mining], Irkutsk, Izd-vo IrGTU, 2013, 128 p.

8. Yangyang Di, Enyuan Wang, Zhonghui Li, Xiaofei Liu, Tao Huang, Jiajie Yao Comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation signals of rock burst based on deep learning. International Journal of Rock Mechanics and Mining Sciences. 2023, vol. 170, article 105519. DOI: 10.1016/j.ijrmms.2023.105519.

9. Prognoz i predotvrashchenie gornykh udarov na rudnikakh: kollektivnaya monografiya. Pod obshch. red. I.M. Petukhova, A.N. Il'ina, K.N. Trubetskogo [Forecast and prediction of rockburst at the mines: a collective monograph. Petukhov I. M., Il'in A. N., Trubetskoy K. N. (Eds.)], Moscow, Izd-vo AGN, 1997, pp. 351—367.

10. Avdeev A., Sosnovskaya E., Krinitsyn R. The geomechanical state of the mine «Mnogovershinnoe» lower levels monitoring. E3S Web of Conferences. 2018, vol. 56, article 02025. DOI: 10.1051/ e3sconf/20185602025.

11. Pavlov A. M. Prediction of geomechanical behavior of deep-level rock mass in the Zun-Kholba deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 105—114. [In Russ]. DOI: 10.25018/02361493-2020-5-0-105-114.

12. Sosnovskiy L. I., Rashkin A. V., Garasch Yu. Yu. Manifestations of rock pressure at great depths during underground mining operations at the Darasunskoye gold deposit. Westnik International academy of ecology and life protection sciences. 2001, no. 10 (34), pp. 139—141. [In Russ].

13. Pavlov A. M., Fedolyak A. A. Improving efficiency of gold deposit underground mining in Eastern Siberia. Proceedings of the Siberian department of the Section of Earth sciences of the Russian academy of natural sciences. Geology exploration and development of mineral deposits. 2018, vol. 41, no. 4 (65), pp. 97—106. [In Russ].

14. Pavlov A. M. Investigation of the geomechanical state of the rock massive of the Glubokoe ore body of the Zun-Kholbinskoye deposit. International Research Journal. 2024, no. 2 (140). [In Russ]. DOI: 10.23670/IRJ.2024.140.90.

15. Vasilyev D. S., Pavlov A. M. Justification of underground gold placer development parameters for the Konevinsky deposit. IOP Conference Series: Earth and Environmental Science. 2020, vol. 408, no. 1, article 012042. DOI:10.1088/1755-1315/408/1/012042.

16. Barna Szabó, Ivo Babuška Finite element analysis: Method, verification and validation. 2nd ed., Hoboken, NJ, Wiley, 2021, 366 p.

17. Reddy J. N. An introduction to nonlinear finite element analysis, 4th ed. McGraw-Hill Education, 2018, 816 р.

18. Moatamedi M., Khawaja H. A. Finite element analysis. Boca Raton: CRC Press, 2018, 154 p.

19. Carlos Agelet de Saracibar Nonlinear continuum mechanics — An engineering approach. Springer, 2022, 346 p.

20. Reddy J. N. The principles of continuum mechanics, 2nd ed., Cambridge University Press, New York, NY, 2018. 270 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.