Removal of nitrogen compounds from mine process water using redox barriers

Open pit mining with drilling and blasting results in formation of quarry water and drainage water impure with inorganic nitrogen compounds (ions of ammonium, nitrite and nitrate) which are the products of decomposition and incomplete consumption of explosives made of ammonium nitrate. Discharge of quarry effluents in open water bodies results in eutrophication of water, triggers active development of microflora, stimulates anaerobic processes in beds and intensifies accumulation of decay products of organic substances, such as hydrogen sulfide and ammonia, which leads to ruin of organic organisms and to deprivation of their recreational functionality. Abatement of the impact exerted by mine effluents on surface and ground water requires purification technologies and methods to be selected with regard to heavy tonnage of effluents and to low content of organic compounds in them. Treatment of effluent requires development of efficient, economical and feasible technologies based on physicochemical cleaning procedures. One of such approaches is creation of artificial geochemical redox barriers. This article describes research findings on application of galvanocoagulation in manmade permeable barriers containing a galvanic couple composed of broken iron and carbon materials to remove nitrate ions from mine water. It is found that zerovalent iron and ions Fe (II) formed in electrochemical interaction of the galvanic couple are capable to recover nitrate ions and to ensure water purification to 99%. The article also gives data on application of peat for removal of ammonium ions NH+ from effluents. Efficiency of the permeable reactive barrier in combination with natural mechanisms in reduction of content of nitrogen compounds in effluents of mining and processing plants is demonstrated. The method developed for removal of nitrogen compounds from open mine effluents involves construction of a reactive barrier (sorption trench) filled with broken iron, carbon materials and sand for removal of nitrogen ions from effluents, and arrangement of peat sites for fine purification of effluents from ions NH+ .

Keywords: open pit mine water, nitrogen compounds, permeable reactive barrier, galvanic couple, zerovalent iron, peat, reduction of nitrates.
For citation:

Glushankova I. S., Bessonova E. N., Blinov S. M., Rudakova L. V., Belkin P. A. Removal of nitrogen compounds from mine process water using redox barriers. MIAB. Mining Inf. Anal. Bull. 2021;(10):58-68. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_58.

Acknowledgements:

The research was supported by the Perm Research and Education Centre for Rational Use of Subsoil, 2021.

Issue number: 10
Year: 2021
Page number: 58-68
ISBN: 0236-1493
UDK: 504.4.054+628.349.08+628.345.9
DOI: 10.25018/0236_1493_2021_10_0_58
Article receipt date: 15.01.2021
Date of review receipt: 01.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.09.2021
About authors:

I.S. Glushankova1, Dr. Sci. (Eng.), Professor,
E.N. Bessonova1, Engineer, e-mail: el-81@yandex.ru,
S.M. Blinov2, Cand. Sci. (Geol. Mineral.), Assistant Professor, Head of Laboratory,
L.V. Rudakova1, Dr. Sci. (Eng.), Professor, Head of Chair,
P.A. Belkin2, Cand. Sci. (Geol. Mineral.), Researcher,
1 Perm National Research Polytechnic University, Perm, Russia,
2 Perm State University, Perm, Russia.

 

For contacts:

E.N. Bessonova, e-mail: el-81@yandex.ru.

Bibliography:

1. Studenok A. G., Studenok G. A., Revvo A. V. Evaluation of wastewater treatment methods from nitrogen compounds for drainage waters of mining enterprises. Izvestiya ural'skogo gosudarstvennogo gornogo universiteta. 2013, no. 2, pp. 26—30.

2. Evdokimova G. A., Ivanova L. A., Mozgova N. P., Myazin V. A., Fokina N. V. Floating bioplato for purification of quarry waste water from mineral nitrogen compounds in arctic conditions. Ekologiya i promyshlennost' Rossii. 2015, no. 9, pp. 35—41. [In Russ].

3. Studenok A. G., Studenok G. A. Purification of open pit drainage waters of mining enterprises from nitrogen compounds at botanical sites with higher aquatic vegetation. Aktual'nye problemy ekonomiki i upravleniya. Sbornik nauchnykh statey Shestoy vserossiyskoy nauchnoprakticheskoy konferentsii s mezhdunarodnym uchastiem [Actual problems of economics and management. Collection of scientific articles of the Sixth All-Russian scientific and Practical conference with international participation], Ekaterinburg, Izd-vo UGGU, 2018, pp. 193—195. [In Russ].

4. Obiri-Nyarko F., Grajales-Mesa S. J., Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere. 2014, vol. 111, pp. 243—259. DOI: org/10.1016/j.chemosphere.2014.03.112.

5. Vodyanitskiy Yu. N., Shoba S. A. Biogeochemical barriers for soil remediation and soilgroundwater treatment. Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie. 2016, no. 3, pp. 3—15. [In Russ].

6. Ziajahromi S., Khanizadeh M., Khiadani M. Experimental evaluation of nitrate reduction from water using synthesis nanoscale zero-valent iron (NZVI) under aerobic conditions. MiddleEast Journal of Scientific Research. 2013, vol. 16, no. 2, pp. 205—209. DOI: 10.5829/idosi. mejsr.2013.16.02.11661.

7. Sicilian А. Use of nanoscale zero-valent iron (NZVI) particles for chemical denitrification under different operating conditions. Metals. 2015, vol. 5, no. 3, pp. 1507—1519. DOI: 10.3390/ met5031507.

8. Liu Y., Wang J. Reduction of nitrate by zero valent iron (ZVI)-based materials. A review. Science of the Total Environment. 2019, vol. 671, pp. 388—403. DOI: 10.1016/j.scitotenv.2019.03.317.

9. Ona-Nguema G., Guerbois D., Pallud C., Brest J., Abdelmoula M., Morin G. Biogenic hydroxycarbonate green rust enhances nitrate removal and decreases ammonium selectivity during heterotrophic denitrification. Minerals. 2020, vol. 10, p. 818. DOI: 10.3390/min10090818.

10. Chanturiya V. A., Solozhenkin P. M. Gal'vanokhimicheskie metody ochistki tekhnogennykh vod: Teoriya i praktika [Galvanochemical methods of industrial water purification: Theory and practice], Moscow, Akademkniga, 2005, 204 p.

11. Kulakov A. A., Kuznetsova Yu. N., Denisova A. E. About wastewater treatment from heavy metal ions using galvanic coagulation method. Khimiya i inzhenernaya ekologiya. XVII Mezhdunarodnaya nauchnaya konferentsiya: Sbornik statey [Chemistry and Environmental Engineering. XVII International Scientific Conference: Collection of articles], Kazan, Izd-vo «Brig», 2017, pp. 26—28. [In Russ].

12. Konoplev E. V., Timakov M. V., Sofronova A. V., Lobanov S. A., Poylov V. Z. Patent RU 2253626. [In Russ].

13. Glushankova I. S., Bessonova E. N., Rudakova L. V., Vlasova O. M., Davletova S. F.Purification of waste water from the production of mineral fluorinated salts from ammonium ions. Ekologiya i promyshlennost' Rossii. 2015, no. 7, pp. 16—19. [In Russ]. DOI: 10.18412/18160395-2015-7-16-19.

14. Tishkovich A. V. Teoriya i praktika ammonizatsii torfa [Theory and practice of peat ammonification], Minsk, Nauka i tekhnika, 1972. 170 с.

15. Ob utverzhdenii normativov kachestva vody vodnykh ob"ektov rybokhozyaystvennogo znacheniya, v tom chisle normativov predel'no dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh ob"ektov rybokhozyaystvennogo znacheniya. Prikaz Minsel'khoza Rossii ot 13.12.2016 № 552 (red. ot 10.03.2020). [On approval of water quality standards for fishery water bodies, including standards for maximum permissible concentrations of pollutants in the waters of fishery water bodies.Order of the Ministry of Agriculture of Russia of 13.12.2016 no. 552], Moscow, 2016. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.